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NOTE FROM THE EDITOR 

  Welcome to the fourth edition of “Topics in Recreational Mathematics.” This one starts off 

with three mathematical cartoons by Caytie Ribble, they will appear in an upcoming book of 

mathematical cartoons and humor that will be published in the middle months of 2015. At the 

end there is a page devoted to each of the books that has been published by Charles Ashbacher 

and his associates.  

  An analysis of the relationship between birth month and hockey performance, magic squares 

and cubes, concatenation sequences and a short biography are some of the other items that are 

included. The biography of al-Kashi is the first of what is to be a series of items about Arab and 

Persian mathematical achievements. Alphametics, problems and book reviews are included as 

well.  

As always, I thank you for your support and welcome your comments and input at  

cashbacher@yahoo.com 

 Contributions are also actively solicited and should be sent to the previous electronic address.  

Charles Ashbacher 
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ARE CANADIAN NHL HALL OF FAMERS WINTER BABIES? 

 

Arthur E. Mittnacht 

Paul M. Sommers 

 

Department of Economics 

Middlebury College 

Middlebury, Vermont 05753 

psommers@middlebury.edu 

 

Abstract 

 Canadian journalist Malcolm Gladwell has suggested that hockey players (particularly 

Canadians) with birthdays early in the year have a greater chance of becoming elite players than 

those with birthdays late in the year.  This note examines all Canadian players (by position, by 

birthdate, and by province of birth) elected to the NHL Hall of Fame through the year 2008.  The 

first three months in the Gladwell division are January, February, and March; the first three 

months in the seasonal division are December, January, and February.  Chi-square goodness-of-

fit tests show no empirical support for the Gladwell breakdown, but disproportionately many 

winter babies for the seasonal breakdown. 
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 Outliers: The Story of Success, by Malcolm Gladwell, suggests that hockey players (particularly 

Canadians) with birthdays in earlier months have a greater chance of becoming elite players than 

those with birthdays in later months [1].  After all, if the eligibility cutoff for age-class hockey is 

January 1st, then a boy born in January has almost an entire extra year to grow than another boy 

born in December, yet they both must compete for the same roster spot.1  Gladwell [1, pp. 20-

21], for example, notes the disproportionately large number of young men (almost half of the 

entire roster) born in January, February, and March on the 2007 Medicine Hat Tigers Canadian 

Junior A league hockey team. 

 The purpose of this brief note is to examine the birth dates of hockey’s elite, Canadian players 

elected to the National Hockey League (NHL) Hall of Fame through the year 2008.  The data on 

birth dates are from www.legendsofhockey.net/html/legendsplayer.htm . 

 The calendar year will be divided two different ways.  First, the calendar year will be divided 

into three-month periods (hereafter, the Gladwell division): January, February, March in the first 

period (hereafter, the first quarter); April, May, June in the second (hereafter, the second 

quarter); and so forth.  Alternatively, one might want to test the belief that the elite players in a 

winter sport were generally born in winter months (henceforth, the seasonal division).  The 

winter months are here assumed to be December, January, and February; the spring months are 

March, April, and May; the summer months are June, July, and August; and the fall months are 

September, October, and November.  Of the 240 players inducted into the NHL’s Hall of Fame 

through the year 2008, 219 were born in Canada (with birth dates reported for 213 of these 

inductees).  And, of the 213 Canadian players enshrined in the Hall of Fame, 29.1 percent were 

born in the first quarter, 22.1 percent were born in the second quarter, 22.5 percent were born in 

the third, and 26.3 percent were born in the fourth.  By comparison, 32.9 percent were born in 

the winter, 22.1 percent were born in the spring, 23.9 percent were born in the summer, and 21.1 

percent were born in the fall. 

 Table 1 shows the Gladwell breakdown of births for various subgroups of Canadian born 

inductees.  Table 2 shows a similar breakdown by season.  To determine whether there are 

statistically discernible variations, either by quarter or by season, a 2 goodness-of-fit test was 

done of the null hypothesis that births are spread evenly over all four three-month periods 

(quarterly or by season). 

 In view of the 2 values reported in the last column of Tables 1 and 2, the null hypothesis 

cannot be rejected (at better than the .05 significance level) using Gladwell’s quarterly division.2  

But, the null hypothesis can be rejected in several instances using the seasonal breakdown.  And, 

in particular, Canadian Hall of Famers, notably defensemen, born in Quebec or before 1944 were 

winter babies more often than not. 

 

http://www.legendsofhockey.net/html/legendsplayer.htm
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Table 1.  Births by Quarter for Various Groups of 

          Canadian NHL Hall of Famers 

 

      Quarter 

                                                _________________________________________   

 Group First Second Third Fourth 2   

 

 

 All inductees 62 47 48 56 2.831 

 Position 

  Forwardsa 32 19 30 28 3.624 

  Defensemenb 20 14 10 11 4.418 

 Birthdate  

  Before 1944c 52 38 36 47 3.948 

  After 1944 10 9 12 9 0.600 

 Provinced 

  Ontario 32 25 25 30 1.357 

  Quebec 20 8 9 15 7.231*** 

 

 

 

   *Significant at better than the .01 level. 

  **Significant at better than the .05 level. 

 ***Significant at better than the .10 level. 
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a Forwards include right wing, center, and left wing. 

b The difference between “All inductees” and the sum of “Forwards” and “Defensemen” include 

  goalies, rovers, and players identified as playing multiple positions. 

c No inductees were born in 1944. 

d Canadian Hall of Famers include natives of other provinces: Manitoba (18),  

  Saskatchewan (17), Alberta (8), British Columbia (4), and one each from New Brunswick,  

  Nova Scotia, and Newfoundland. 
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Table 2.  Births by Season for Various Groups of 

          Canadian NHL Hall of Famers 

 

   Season 

                                               _________________________________________ 

 

  Group Winter Spring Summer Fall 2  

 

 

 All inductees 70 47 51 45 7.376** 

 Position  

  Forwardsa 35 19 28 27 4.725 

  Defensemenb 22 16 13 4 12.273* 

 Birthdate 

  Before 1944c 61 37 40 35 10.006** 

  After 1944 9 10 11 10 0.200 

 Provinced 

  Ontario 32 25 25 30 1.357 

  Quebec 20 8 9 15 7.231*** 

 

  

   *Significant at better than the .01 level. 

  **Significant at better than the .05 level. 

 ***Significant at better than the .10 level. 
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a See footnote a in Table 1. 

b See footnote b in Table 1. 

c See footnote c in Table 1. 

d See footnote d in Table 1. 

Reference 

1. M. Gladwell, Outliers: The Story of Success, Little, Brown and Co., 

 New York, NY, 2008. 

Footnotes 

1. Two notable January babies now enshrined in the NHL Hall of Fame are Wayne Gretzky 

 (born on January 26, 1961) and Mark Messier (born on January 18, 1961). 

 

2. We cannot reject the null hypothesis of no difference in the birth rate between months 

 ( 366.92  , p = .588).  There are as many Canadian Hall of Famers born in January 

 as there are in December (25). 
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CONCENTRIC MAGIC CUBES OF PRIME NUMBERS 

 

Natalia Makarova 

Saratov, Russia 

natalimak1@yandex.ru  

 

 

Abstract 

  Like their two-dimensional counterparts, three-dimensional magic cubes can fascinate and 

surprise you with their existence. The level of difficulty and fascination is even higher when 

magic cubes are constructed inside magic cubes. When there are several layers, they remind you 

of the Russian Matryoshka dolls-within-dolls. Several examples of magic cubes constructed 

using formulas are given in this paper, including some constructed from prime numbers.  
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Introduction 

 On the web page 

http://www.magic-SquareS.net/c-t-htm/c_prime.htm 

there is the concentric magic cube of order 6 of distinct primes seen in figure 1.  

Figure 1 

4831 4783 67 9811 4639 5479 

191 241 193 9473 9769 9743 

331 577 5009 4751 9619 9323 

8273 9719 8933 1123 829 733 

8423 7499 8287 1789 1801 1811 

7561 6791 7121 2663 2953 2521 

 

131 761 379 9403 9497 9439 

8951 2437 3547 5309 8447 919 

9643 3209 5573 2281 8677 227 

2143 8243 4877 6007 613 7727 

8311 5851 5743 6143 2003 1559 

431 9109 9491 467 373 9739 

 

337 8849 8821 1409 1307 8887 

7013 5903 2879 9007 1951 2857 

8009 3217 2767 8117 5639 1861 

9049 6073 5521 2333 5813 821 

4219 4547 8573 283 6337 5651 

983 1021 1049 8461 8563 9533 

http://www.magic-squares.net/c-t-htm/c_prime.htm
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8543 8839 9277 173 1831 947 

4177 3533 9587 1297 5323 5693 

7487 4057 7537 4349 3797 2383 

31 4231 1753 7103 6653 9839 

449 7919 863 6991 3967 9421 

8923 1031 593 9697 8039 1327 

 

8419 3299 8317 1607 5419 2549 

9151 7867 3727 4127 4019 719 

3593 9257 3863 4993 1627 6277 

977 1193 7589 4297 6661 8893 

149 1423 4561 6323 7433 9721 

7321 6571 1553 8263 4451 1451 

 

7349 3079 2749 7207 6917 2309 

127 9629 9677 397 101 9679 

547 9293 4861 5119 251 9539 

9137 151 937 8747 9041 1597 

8059 2371 1583 8081 8069 1447 

4391 5087 9803 59 5231 5039 

 

 The magic constant of this magic cube is 29610. 

 Inside is the associative (central symmetric) and pantriagonal cube of order 4 with a magic 

constant of 19740 that is seen in figure 2.  
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Figure 2 

2437 3547 5309 8447 

3209 5573 2281 8677 

8243 4877 6007 613 

5851 5743 6143 2003 

 

5903 2879 9007 1951 

3217 2767 8117 5639 

6073 5521 2333 5813 

4547 8573 283 6337 

 

3533 9587 1297 5323 

4057 7537 4349 3797 

4231 1753 7103 6653 

7919 863 6991 3967 

 

7867 3727 4127 4019 

9257 3863 4993 1627 

1193 7589 4297 6661 

1423 4561 6323 7433 

 

The concentric magic cube is an interesting subset of the set of magic cubes.  

 Our next step will be to present concentric magic cubes of orders 5, 6 and 7 that are composed 

of distinct primes.   
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Concentric magic cubes of order 5 

The scheme for concentric magic cubes of order 5 is as seen in figure 3 

Figure 3 

x1 x2 x3 x4 x5 

x6 x7 x8 x9 x10 

x11 x12 x13 x14 x15 

x16 x17 x18 x19 x20 

x21 x22 x23 x24 x25 

 

x26 x27 x28 x29 x30 

x31    k-x31 

x32    k-x32 

x33    k-x33 

k-x30 k-x27 k-x28 k-x29 k-x26 

  

x34 x35 x36 x37 x38 

x39    k-x39 

x40  k/2  k-x40 

x41    k-x41 

k-x38 k-x35 k-x36 k-x37 k-x34 
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x42 x43 x44 x45 x46 

x47    k-x47 

x48    k-x48 

x49    k-x49 

k-x46 k-x43 k-x44 k-x45 k-x42 

 

k-x25 k-x22 k-x23 k-x24 k-x21 

k-x10 k-x7 k-x8 k-x9 k-x6 

k-x15 k-x12 k-x13 k-x14 k-x11 

k-x20 k-x17 k-x18 k-x19 k-x16 

k-x5 k-x2 k-x3 k-x4 k-x1 

 

The magic constant of this magic cube S = 5k / 2. 

 In the inner region we have the magic cube of order 3 with magic constant S = 3k / 2. This 

magic cube is associative with constant associativity k.  

We make this magic cube in the first stage.  

 If such a magic cube of order 3 is found, the second stage is the working out of the edging.  

The system of linear equations describing the concentric cube of order 5 follows. 

x1+x2+x3+x4+x5=S 

x6+x7+x8+x9+x10=S 

x11+x12+x13+x14+x15=S 

x16+x17+x18+x19+x20=S 

x21+x22+x23+x24+x25=S 

x26+x27+x28+x29+x30=S 

x34+x35+x36+x37+x38=S 

x42+x43+x44+x45+x46=S 
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x1+x6+x11+x16+x21=S 

x2+x7+x12+x17+x22=S 

x3+x8+x13+x18+x23=S 

x4+x9+x14+x19+x24=S 

x5+x10+x15+x20+x25=S 

x26+x31+x32+x33-x30=3S/5 

x34+x39+x40+x41-x38=3S/5 

x42+x47+x48+x49-x46=3S/5 

x1+x26+x34+x42-x25=3S/5 

x2+x27+x35+x43-x22=3S/5 

x3+x28+x36+x44-x23=3S/5 

x4+x29+x37+x45-x24=3S/5 

x5+x30+x38+x46-x21=3S/5 

x6+x31+x39+x47-x10=3S/5 

x11+x32+x40+x48-x15=3S/5 

x16+x33+x41+x49-x20=3S/5 

This system is solved to find the general formula for the concentric magic cube of order 5. 

x5=S-x1-x2-x3-x4 

x9=S-x10-x6-x7-x8 

x15=S-x11-x12-x13-x14 

x17=S-x16-x18-x19-x20 

x21=S-x1-x11-x16-x6 

x22=-x12+x16+x18+x19-x2+x20-x7 

x23=S-x13-x18-x3-x8 

x24=x10-x14-x19-x4+x6+x7+x8 

x25=-S+x1-x10+x11+x12+x13+x14+x2-x20+x3+x4 

x30=S-x26-x27-x28-x29 

x33=(8 S)/5-2 x26-x27-x28-x29-x31-x32 

x34=-S-x10+x11+x12+x13+x14+x2-x20-x26+x3+x4-x46+x47+x48+x49 

x35=S/5-x12+x16+x18+x19-2 x2+x20-x27+x44+x45+2 x46-x47-x48-x49-x7 
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x36=(8 S)/5-x13-x18-x28-2 x3-x44-x8 

x37=(3 S)/5+x10-x14-x19-x29-2 x4-x45+x6+x7+x8 

x38=-((2 S)/5)-x11-x16+x2+x26+x27+x28+x29+x3+x4-x46-x6 

x39=(3 S)/5+x10-x31-x47-x6 

x40=(8 S)/5-2 x11-x12-x13-x14-x32-x48 

x41=-S-x16+x20+2 x26+x27+x28+x29+x31+x32-x49 

x42=(3 S)/5+x46-x47-x48-x49 

x43=(2 S)/5-x44-x45-2 x46+x47+x48+x49 

This system as 28 of the 49 variables free once you set the parameter k. 

 Using this general formula, you can construct a lot of concentric magic cubes of order 5. 

 Here are some of my solutions for specific values of S and k. 

Figure 4 

S = 12955, k = 5182 

4253 953 1301 2789 3659 

701 2909 4133 4721 491 

431 2099 2633 5051 2741 

3989 3371 809 83 4703 

3581 3623 4079 311 1361 

 

29 2063 4799 3923 2141 

2213 2939 4733 101 2969 

4001 3863 659 3251 1181 

3671 971 2381 4421 1511 

3041 3119 383 1259 5153 
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173 3449 4271 599 4463 

5171 4073 239 3461 11 

4919 1979 2591 3203 263 

1973 1721 4943 1109 3209 

719 1733 911 4583 5009 

 

4679 4931 1481 773 1091 

179 761 2801 4211 5003 

1163 1931 4523 1319 4019 

2843 5081 449 2243 2339 

4091 251 3701 4409 503 

 

3821 1559 1103 4871 1601 

4691 2273 1049 461 4481 

2441 3083 2549 131 4751 

479 1811 4373 5099 1193 

1523 4229 3881 2393 929 

 

Figure 5 

S = 13945, k = 5578 

2111 2039 5399 107 4289 

5519 1187 2741 4271 227 

557 4481 389 3221 5297 

4817 1229 269 4139 3491 

941 5009 5147 2207 641 
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1559 5507 1997 4877 5 

857 2411 4259 1697 4721 

5477 2957 2441 2969 101 

479 2999 1667 3701 5099 

5573 71 3581 701 4019 

 

1571 4649 1907 4931 887 

1901 4079 197 4091 3677 

4751 2801 2789 2777 827 

1031 1487 5381 1499 4547 

4691 929 3671 647 4007 

 

3767 1181 4211 659 4127 

317 1877 3911 2579 5261 

2879 2609 3137 2621 2699 

5531 3881 1319 3167 47 

1451 4397 1367 4919 1811 

 

4937 569 431 3371 4637 

5351 4391 2837 1307 59 

281 1097 5189 2357 5021 

2087 4349 5309 1439 761 

1289 3539 179 5471 3467 
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Figure 6 

S = 15835, k = 6334 

3923 4337 941 5273 1361 

431 6329 3533 71 5471 

5693 1031 4457 4463 191 

5507 4127 2633 857 2711 

281 11 4271 5171 6101 

 

683 4091 3557 5591 1913 

5237 3491 5657 353 1097 

947 3593 761 5147 5387 

4547 2417 3083 4001 1787 

4421 2243 2777 743 5651 

 

5153 467 2963 3671 3581 

5051 3677 593 5231 1283 

2531 4721 3167 1613 3803 

347 1103 5741 2657 5987 

2753 5867 3371 2663 1181 

 

5843 617 6311 137 2927 

4253 2333 3251 3917 2081 

521 1187 5573 2741 5813 

1811 5981 677 2843 4523 

3407 5717 23 6197 491 
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233 6323 2063 1163 6053 

863 5 2801 6263 5903 

6143 5303 1877 1871 641 

3623 2207 3701 5477 827 

4973 1997 5393 1061 2411 

 

Figure 7 

S = 15955, k = 6382 

4001 5099 1439 3023 2393 

479 6143 1901 1103 6329 

5471 641 3923 5639 281 

5981 353 2579 4889 2153 

23 3719 6113 1301 4799 

 

83 1709 6131 5189 2843 

5441 3371 5153 1049 941 

2243 3413 1889 4271 4139 

4649 2789 2531 4253 1733 

3539 4673 251 1193 6299 
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4409 4973 3833 2141 599 

3671 4073 569 4931 2711 

1109 4049 3191 2333 5273 

983 1451 5813 2309 5399 

5783 1409 2549 4241 1973 

 

5879 1511 4283 521 3761 

6311 2129 3851 3593 71 

1031 2111 4493 2969 5351 

113 5333 1229 3011 6269 

2621 4871 2099 5861 503 

 

1583 2663 269 5081 6359 

53 239 4481 5279 5903 

6101 5741 2459 743 911 

4229 6029 3803 1493 401 

3989 1283 4943 3359 2381 

 

Figure 8 

S = 18035, k = 7214 

4297 5647 3571 157 4363 

2707 967 2617 6841 4903 

2887 4933 5791 2953 1471 

1867 2971 3673 6793 2731 

6277 3517 2383 1291 4567 
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523 6427 877 5197 5011 

6481 3943 6571 307 733 

5437 4657 1063 5101 1777 

3391 2221 3187 5413 3823 

2203 787 6337 2017 6691 

 

4447 331 6163 541 6553 

5683 5077 223 5521 1531 

607 4051 3607 3163 6607 

6637 1693 6991 2137 577 

661 6883 1051 6673 2767 

 

6121 1933 2593 6217 1171 

853 1801 4027 4993 6361 

3361 2113 6151 2557 3853 

1657 6907 643 3271 5557 

6043 5281 4621 997 1093 

 

2647 3697 4831 5923 937 

2311 6247 4597 373 4507 

5743 2281 1423 4261 4327 

4483 4243 3541 421 5347 

2851 1567 3643 7057 2917 
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 In figures 25, 27 and 28 you can see interior concentric magic cubes of order 5 inside concentric 

magic cubes of order 7.  

 It is interesting to note that we can create classic (numbers 1 though n^2) concentric magic 

cubes of order 5 (see Fig. 9). This magic cube is made up of distinct positive integers from 1 to 

125. 

Figure 9 

 S = 315, k = 126 

16 98 62 25 114 

44 75 112 50 34 

43 74 49 113 36 

115 41 73 48 38 

97 27 19 79 93 

 

21 10 70 125 89 

94 81 106 2 32 

91 100 22 67 35 

72 8 61 120 54 

37 116 56 1 105 

 

122 68 5 103 17 

46 102 18 69 80 

7 30 63 96 119 

31 57 108 24 95 

109 58 121 23 4 
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123 40 71 15 66 

39 6 65 118 87 

84 59 104 26 42 

9 124 20 45 117 

60 86 55 111 3 

 

33 99 107 47 29 

92 51 14 76 82 

90 52 77 13 83 

88 85 53 78 11 

12 28 64 101 110 

 

Concentric magic cubes of order 6 

 A concentric magic cube of order 6 has already appeared in figure 1. A scheme for concentric 

magic cubes of order 6 is given in figure 10.  

Figure 10 

x1 x2 x3 x4 x5 x6 

x7 x8 x9 x10 x11 x12 

x13 x14 x15 x16 x17 x18 

x19 x20 x21 x22 x23 x24 

x25 x26 x27 x28 x29 x30 

x31 x32 x33 x34 x35 x36 
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x37 x38 x39 x40 x41 x42 

x43     k-x43 

x44     k-x44 

x45     k-x45 

x46     k-x46 

k-x42 k-x38 k-x39 k-x40 k-x41 k-x37 

 

x47 x48 x49 x50 x51 x52 

x53     k-x53 

x54     k-x54 

x55     k-x55 

x56     k-x56 

k-x52 k-x48 k-x49 k-x50 k-x51 k-x47 

 

x57 x58 x59 x60 x61 x62 

x63     k-x63 

x64     k-x64 

x65     k-x65 

x66     k-x66 

k-x62 k-x58 k-x59 k-x60 k-x61 k-x57 
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x67 x68 x69 x70 x71 x72 

x73     k-x73 

x74     k-x74 

x75     k-x75 

x76     k-x76 

k-x72 k-x68 k-x69 k-x70 k-x71 k-x67 

 

k-x36 k-x32 k-x33 k-x34 k-x35 k-x31 

k-x12 k-x8 k-x9 k-x10 k-x11 k-x7 

k-x18 k-x14 k-x15 k-x16 k-x17 k-x13 

k-x24 k-x20 k-x21 k-x22 k-x23 k-x19 

k-x30 k-x26 k-x27 k-x28 k-x29 k-x25 

 

 The magic constant of the cube S = 3k. Inside there is a magic cube of order 4 with a magic 

constant S = 2k, this magic cube can be both associative and non-associative. In magic cube of 

figure 1 is an example of an interior magic cube that is associative.  

 In the present scheme one can write a system of linear equations and solve it. The end result is a 

general formula for concentric magic cubes of order 6, similar to that shown for the concentric 

magic cube of order 5. 

 Using distinct primes I was able to create several concentric magic cubes of order 6 with a 

magic constant S < 29610. Here are some examples.  
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Figure 11 

S = 5670, k = 1890  

971 761 1801 367 157 1613 

1447 379 491 1031 569 1753 

1033 1667 1709 281 877 103 

1117 1777 419 457 1607 293 

461 23 787 1723 797 1879 

641 1063 463 1811 1663 29 

 

607 409 719 1877 1627 431 

1543 1039 31 887 1823 347 

599 439 2311 383 647 1291 

233 353 557 2371 499 1657 

1229 1949 881 139 811 661 

1459 1481 1171 13 263 1283 

 

937 149 1303 677 983 1621 

1553 97 307 2069 1307 337 

727 2267 523 317 673 1163 

653 967 1451 271 1091 1237 

1531 449 1499 1123 709 359 

269 1741 587 1213 907 953 
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1277 1693 19 1289 829 563 

593 53 2333 751 643 1297 

1423 991 107 373 2309 467 

311 2423 571 659 127 1579 

739 313 769 1997 701 1151 

1327 197 1871 601 1061 613 

 

17 1831 401 1381 1847 193 

397 2591 1109 73 7 1493 

101 83 839 2707 151 1789 

1759 37 1201 479 2063 131 

1699 1069 631 521 1559 191 

1697 59 1489 509 43 1873 

 

1861 827 1427 79 227 1249 

137 1511 1399 859 1321 443 

1787 223 181 1609 1013 857 

1597 113 1471 1433 283 773 

11 1867 1103 167 1093 1429 

277 1129 89 1523 1733 919 

 

This magic cube is a known minimal simple magic cube. 
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Figure 12 

S = 6030, k = 2010 

 

13 59 1319 1439 1987 1213 

1811 479 397 257 1759 1327 

1973 383 839 1277 1091 467 

1103 1949 1283 461 353 881 

991 1259 499 1409 439 1433 

139 1901 1693 1187 401 709 

 

7 389 1777 1487 1913 457 

1033 1861 19 641 1499 977 

643 877 1597 1373 173 1367 

1847 1193 71 1459 1297 163 

947 89 2333 547 1051 1063 

1553 1621 233 523 97 2003 

 

809 1601 1291 557 31 1741 

1567 151 73 1667 2129 443 

1151 953 1723 587 757 859 

787 283 1733 1303 701 1223 

1447 2633 491 463 433 563 

269 409 719 1453 1979 1201 
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1993 1999 1013 487 311 227 

79 449 1889 1471 211 1931 

347 1279 107 2017 617 1663 

941 1061 1867 431 661 1069 

887 1231 157 101 2531 1123 

1783 11 997 1523 1699 17 

 

1907 1873 313 1237 179 521 

857 1559 2039 241 181 1153 

373 911 593 43 2473 1637 

223 1483 349 827 1361 1787 

1181 67 1039 2909 5 829 

1489 137 1697 773 1831 103 

 

1301 109 317 823 1609 1871 

683 1531 1613 1753 251 199 

1543 1627 1171 733 919 37 

1129 61 727 1549 1657 907 

577 751 1511 601 1571 1019 

797 1951 691 571 23 1997 
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Figure 13 

S = 10080, k = 3360 

421 2347 2081 2971 1583 677 

1277 1229 1307 3323 1571 1373 

1549 1933 2477 293 1297 2531 

2539 359 2069 2423 1951 739 

2393 1861 653 499 2297 2377 

1901 2351 1493 571 1381 2383 

 

1481 41 197 2719 2521 3121 

673 919 3331 1913 557 2687 

1873 1663 151 2273 2633 1487 

2851 3329 17 193 3181 509 

2963 809 3221 2341 349 397 

239 3319 3163 641 839 1879 

 

1223 463 3079 857 2207 2251 

2837 661 2269 3347 443 523 

2903 3251 103 53 3313 457 

647 2617 2309 61 1733 2713 

1361 191 2039 3259 1231 1999 

1109 2897 281 2503 1153 2137 
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2677 3083 2767 311 541 701 

1693 2129 101 1321 3169 1667 

1367 1627 3299 1051 743 1993 

1181 47 3307 3257 109 2179 

503 2917 13 1091 2699 2857 

2659 277 593 3049 2819 683 

 

3301 3137 89 433 1249 1871 

1613 3011 1019 139 2551 1747 

1559 179 3167 3343 31 1801 

241 727 1087 3209 1697 3119 

1877 2803 1447 29 2441 1483 

1489 223 3271 2927 2111 59 

 

977 1009 1867 2789 1979 1459 

1987 2131 2053 37 1789 2083 

829 1427 883 3067 2063 1811 

2621 3001 1291 937 1409 821 

983 1499 2707 2861 1063 967 

2683 1013 1279 389 1777 2939 
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Figure 14 

S = 19800, k = 6600 

883 5591 3697 4243 233 5153 

1117 4457 5923 1031 4799 2473 

5387 4289 977 2273 5507 1367 

4447 179 2861 6121 743 5449 

6269 863 5323 1549 2777 3019 

1697 4421 1019 4583 5741 2339 

 

1783 47 239 6373 6007 5351 

151 613 6571 4349 1667 6449 

6247 3517 283 5147 4253 353 

6211 6359 23 271 6547 389 

4159 2711 6323 3433 733 2441 

1249 6553 6361 227 593 4817 

 

397 211 3299 5861 5981 4051 

4597 1321 3391 6491 1997 2003 

1523 6563 19 149 6469 5077 

6221 4363 5273 31 3533 379 

4513 953 4517 6529 1201 2087 

2549 6389 3301 739 619 6203 

 

 

 



39 

 

6133 6113 3797 449 3229 79 

3881 5399 71 2083 5647 2719 

911 3067 6569 1327 2237 5689 

1597 131 6451 6581 37 5003 

757 4603 109 3209 5279 5843 

6521 487 2803 6151 3371 467 

 

6343 5659 3187 857 3491 263 

5927 5867 3167 277 3889 673 

499 53 6329 6577 241 6101 

173 2347 1453 6317 3083 6427 

521 4933 2251 29 5987 6079 

6337 941 3413 5743 3109 257 

 

4261 2179 5581 2017 859 4903 

4127 2143 677 5569 1801 5483 

5233 2311 5623 4327 1093 1213 

1151 6421 3739 479 5857 2153 

3581 5737 1277 5051 3823 331 

1447 1009 2903 2357 6367 5717 
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Figure 15 

S = 25200, k = 8400 

5197 5521 5171 4373 677 4261 

2311 2699 7237 1361 6029 5563 

6803 919 4787 8053 311 4327 

5087 7937 1543 1747 7433 1453 

571 2267 3413 3469 8171 7309 

5231 5857 3049 6197 2579 2287 

 

523 809 11 8269 8011 7577 

37 1213 8293 2621 4673 8363 

8161 7573 643 5807 2777 239 

8287 6911 137 2011 7741 113 

7369 1103 7727 6361 1609 1031 

823 7591 8389 131 389 7877 

 

179 6763 5717 3389 5689 3463 

8317 709 6397 6287 3407 83 

2503 8387 1399 2153 4861 5897 

2143 727 7823 31 8219 6257 

7121 6977 1181 8329 313 1279 

4937 1637 2683 5011 2711 8221 
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4951 7537 1667 1567 4241 5237 

7901 8087 71 7219 1423 499 

1187 181 8369 577 7673 7213 

1297 3539 6247 7001 13 7103 

6701 4993 2113 2003 7691 1699 

3163 863 6733 6833 4159 3449 

 

8237 2027 7283 5399 761 1493 

3797 6791 2039 673 7297 4603 

2473 659 6389 8263 1489 5927 

1439 5623 2593 7757 827 6961 

2347 3727 5779 107 7187 6053 

6907 6373 1117 3001 7639 163 

 

6113 2543 5351 2203 5821 3169 

2837 5701 1163 7039 2371 6089 

4073 7481 3613 347 8089 1597 

6947 463 6857 6653 967 3313 

1091 6133 4987 4931 229 7829 

4139 2879 3229 4027 7723 3203 

 

 I was unable to make a concentric magic cube of order 6 with a magic constant S = 5040, 

perhaps a reader will have better luck.  

 The border is easily made. One embodiment is shown in Fig. 16. 
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Figure 16 

 

Try to find a magic cube of order 4 with a magic constant S = 3360, which is to be inserted into 

the fringes, shown on the right in the illustration. It's an interesting challenge! 

 My partial solution to the problem that contains 5 errors appears in figure 17. 

Figure 17 

1301 191 1669 389 1249 241 

1609 137 61 1171 1109 953 

577 1429 1367 113 227 1327 

1307 1423 593 1321 199 197 

233 1033 929 463 769 1613 

13 827 421 1583 1487 709 
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17 23 1193 1279 1297 1231 

1223 1987 7 863 503 457 

1549 613 2221 107 419 131 

271 239 101 2053 967 1409 

1531 521 1031 337 1471 149 

449 1657 487 401 383 1663 

 

53 823 631 1571 1021 941 

1019 103 73 1997 1187 661 

997 1847 673 317 523 683 

859 601 461 1009 1289 821 

1373 809 2153 37 361 307 

739 857 1049 109 659 1627 

 

 

1061 1597 229 467 1123 563 

181 701 2099 349 211 1499 

947 409 311 919 1721 733 

641 1973 787 269 331 1039 

1093 277 163 1823 1097 587 

1117 83 1451 1213 557 619 
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1637 1553 59 1237 157 397 

281 569 1181 151 1459 1399 

617 491 155 2017 697 1063 

479 547 2011 29 773 1201 

743 1753 13 1163 431 937 

1283 127 1621 443 1523 43 

 

971 853 1259 97 193 1667 

727 1543 1619 509 571 71 

353 251 313 1567 1453 1103 

1483 257 1087 359 1481 373 

67 647 751 1217 911 1447 

1439 1489 11 1291 431 379 

 

Explanation of the errors: 

361 is not prime 

155 is not prime 

697 is not prime 

13 is not unique 

431 is not unique 

 Another embodiment of the border appears in figure 18. 
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Figure 18 

1327 739 479 821 1663 11 

1453 149 13 1367 1087 971 

1307 1093 1637 647 127 229 

181 1291 1283 769 257 1259 

641 1301 307 1237 383 1171 

131 467 1321 199 1523 1399 

 

23 53 1567 1021 1429 947 

883     797 

857     823 

1483     197 

1061     619 

733 1627 113 659 251 1657 

 

191 109 1063 853 1223 1601 

937     743 

631     1049 

1619     61 

1583     97 

79 1571 617 827 457 1489 
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1597 1439 449 463 431 661 

571     1109 

67     1613 

1103     577 

683     997 

1019 241 1231 1217 1249 83 

 

1621 1487 1123 401 137 271 

487     1193 

727     953 

233     1447 

563     1117 

1409 193 557 1279 1543 59 

 

281 1213 359 1481 157 1549 

709 1531 1667 313 593 227 

1451 587 43 1033 1553 373 

421 389 397 911 1423 1499 

509 379 1373 443 1297 1039 

1669 941 1201 859 17 353 

  

I found a solution for this variant that only has three errors and it appears in figure 19. 

Explanation of the errors: 

445 is not prime 

781 is not prime 
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97 is not unique 

Figure 19 

S = 5040, k = 1680 

1327 739 479 821 1663 11 

1453 149 13 1367 1087 971 

1307 1093 1637 647 127 229 

181 1291 1283 769 257 1259 

641 1301 307 1237 383 1171 

131 467 1321 199 1523 1399 

 

23 53 1567 1021 1429 947 

883 1987 7 863 503 797 

857 613 2221 107 419 823 

1483 239 101 2053 967 197 

1061 521 1031 337 1471 619 

733 1627 113 659 251 1657 

 

191 109 1063 853 1223 1601 

937 103 73 1997 1187 743 

631 1847 757 317 439 1049 

1619 601 461 1009 1289 61 

1583 809 2069 37 445 97 

79 1571 617 827 457 1489 
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1597 1439 449 463 431 661 

571 701 2099 349 211 1109 

67 409 311 919 1721 1613 

1103 1973 787 269 331 577 

683 277 163 1823 1097 997 

1019 241 1231 1217 1249 83 

 

1621 1487 1123 401 137 271 

487 569 1181 151 1459 1193 

727 491 71 2017 781 953 

233 547 2011 29 773 1447 

563 1753 97 1163 347 1117 

1409 193 557 1279 1543 59 

 

281 1213 359 1481 157 1549 

709 1531 1667 313 593 227 

1451 587 43 1033 1553 373 

421 389 397 911 1423 1499 

509 379 1373 443 1297 1039 

1669 941 1201 859 17 353 

 

 Figure 20 contains a classic concentric magic cube of order 6. This cube is made up of distinct 

positive integers from 1 to 216. The interior is an unconventional associative magic cube of order 

4 with magic constant S = 434. 
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Figure 20 

S = 651, k = 217. 

107 160 56 78 133 117 

104 165 51 76 134 121 

193 155 70 81 37 115 

9 153 87 146 179 77 

188 17 214 181 16 35 

50 1 173 89 152 186 

 

75 48 82 42 194 210 

156 2 99 144 189 61 

162 79 46 197 112 55 

148 150 183 8 93 69 

103 203 106 85 40 114 

7 169 135 175 23 142 

 

108 12 45 192 174 120 

74 98 27 164 145 143 

129 47 54 137 196 88 

127 158 151 92 33 90 

116 131 202 41 60 101 

97 205 172 25 43 109 
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123 30 211 206 63 18 

95 157 176 15 86 122 

26 184 125 66 59 191 

159 21 80 163 170 58 

49 72 53 190 119 168 

199 187 6 11 154 94 

 

207 185 213 5 22 19 

126 177 132 111 14 91 

39 124 209 34 67 178 

68 105 20 171 138 149 

13 28 73 118 215 204 

198 32 4 212 195 10 

 

31 216 44 128 65 167 

96 52 166 141 83 113 

102 62 147 136 180 24 

140 64 130 71 38 208 

182 200 3 36 201 29 

100 57 161 139 84 110 

 

Concentric magic cubes of order 7 

 Figure 21 contains a scheme for concentric magic cubes of order 7. 
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Figure 21 

y1 y2 y3 y4 y5 y6 y7 

y8 y9 y10 y11 y12 y13 y14 

y15 y16 y17 y18 y19 y20 y21 

y22 y23 y24 y25 y26 y27 y28 

y29 y30 y31 y32 y33 y34 y35 

y36 y37 y38 y39 y40 y41 y42 

y43 y44 y45 y46 y47 y48 y49 

 

x1 x2 x3 x4 x5 x6 x7 

x8      k-x8 

x9      k-x9 

x10      k-x10 

x11      k-x11 

x12      k-x12 

k-x7 k-x2 k-x3 k-x4 k-x5 k-x6 k-x1 

 

x13 x14 x15 x16 x17 x18 x19 

x20      k-x20 

x21      k-x21 

x22      k-x22 

x23      k-x23 

x24      k-x24 

k-x19 k-x14 k-x15 k-x16 k-x17 k-x18 k-x13 
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x25 x26 x27 x28 x29 x30 x31 

x32      k-x32 

x33      k-x33 

x34   k/2   k-x34 

x35      k-x35 

x36      k-x36 

k-x31 k-x26 k-x27 k-x28 k-x29 k-x30 k-x25 

 

x37 x38 x39 x40 x41 x42 x43 

x44      k-x44 

x45      k-x45 

x46      k-x46 

x47      k-x47 

x48      k-x48 

k-x43 k-x38 k-x39 k-x40 k-x41 k-x42 k-x37 

 

x49 x50 x51 x52 x53 x54 x55 

x56      k-x56 

x57      k-x57 

x58      k-x58 

x59      k-x59 

x60      k-x60 

k-x55 k-x50 k-x51 k-x52 k-x53 k-x54 k-x49 
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k-y49 k-y44 k-y45 k-y46 k-y47 k-y48 k-y43 

k-y14 k-y9 k-y10 k-y11 k-y12 k-y13 k-8 

k-y21 k-y16 k-y17 k-y18 k-y19 k-y20 k-y15 

k-y28 k-y23 k-y24 k-y25 k-y26 k-y27 k-y22 

k-y35 k-y30 k-y31 k-y32 k-y33 k-y34 k-y29 

k-y42 k-y37 k-y38 k-y39 k-y40 k-y41 k-y36 

k-y7 k-y2 k-y3 k-y4 k-y5 k-y6 k-y1 

 

The magic constant is S = 7k / 2. 

 In general, the interior can be any magic cube of order 5 with magic constants S = 5k / 2, but it 

can also be a concentric magic cube. 

Figure 22 contains an example of a classical concentric magic cube where the inside is not a 

concentric magic cube of order 5. This cube is made up of distinct positive integers from 1 to 

343. 

The interior of the cube is an unconventional associative pantriagonal cube of order 5 with a 

magic constant S = 860. 

Figure 22 

S = 1204, k = 344 

318 8 57 261 7 227 326 

312 11 60 258 10 222 331 

17 305 163 103 136 324 156 

51 137 170 169 299 196 182 

91 292 245 267 161 84 64 

105 235 306 50 300 66 142 

310 216 203 96 291 85 3 
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200 73 111 123 255 176 266 

1 296 230 199 133 2 343 

304 28 322 256 160 94 40 

72 120 54 283 217 186 272 

219 212 81 15 309 243 125 

330 204 173 107 41 335 14 

78 271 233 221 89 168 144 

 

116 97 79 25 320 254 313 

340 223 192 126 30 289 4 

110 315 249 153 87 56 234 

274 82 276 210 179 113 70 

215 74 43 302 236 205 129 

118 166 100 69 328 197 226 

31 247 265 319 24 90 228 

 

19 242 187 59 323 180 194 

214 185 119 23 282 251 130 

195 277 146 80 49 308 149 

193 269 238 172 106 75 151 

232 36 295 264 198 67 112 

201 93 62 321 225 159 143 

150 102 157 285 21 164 325 
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33 339 297 268 131 71 65 

135 147 16 275 244 178 209 

298 139 108 42 301 270 46 

206 231 165 134 68 262 138 

63 288 257 191 95 29 281 

190 55 314 218 152 121 154 

279 5 47 76 213 273 311 

 

177 317 332 220 115 37 6 

189 9 303 237 171 140 155 

92 101 35 329 263 132 252 

246 158 127 61 290 224 98 

104 250 184 88 22 316 240 

58 342 211 145 114 48 286 

338 27 12 124 229 307 167 

 

341 128 141 248 53 259 34 

13 333 284 86 334 122 32 

188 39 181 241 208 20 327 

162 207 174 175 45 148 293 

280 52 99 77 183 260 253 

202 109 38 294 44 278 239 

18 336 287 83 337 117 26 
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 Next, we will consider the case where a concentric magic cube of order 5 is inside a concentric 

magic cube of order 7. 

 The scheme of this magic cube is shown in Fig. 23. 

Figure 23 

y1 y2 y3 y4 y5 y6 y7 

y8 y9 y10 y11 y12 y13 y14 

y15 y16 y17 y18 y19 y20 y21 

y22 y23 y24 y25 y26 y27 y28 

y29 y30 y31 y32 y33 y34 y35 

y36 y37 y38 y39 y40 y41 y42 

y43 y44 y45 y46 y47 y48 y49 

 

x1 x2 x3 x4 x5 x6 x7 

x8 z1 z2 z3 z4 z5 k-x8 

x9 z6 z7 z8 z9 z10 k-x9 

x10 z11 z12 z13 z14 z15 k-x10 

x11 z16 z17 z18 z19 z20 k-x11 

x12 z21 z22 z23 z24 z25 k-x12 

k-x7 k-x2 k-x3 k-x4 k-x5 k-x6 k-x1 
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x13 x14 x15 x16 x17 x18 x19 

x20 z26 z27 z28 z29 z30 k-x20 

x21 z31    k-z31 k-x21 

x22 z32    k-z32 k-x22 

x23 z33    k-z33 k-x23 

x24 k-z30 k-z27 k-z28 k-z29 k-z26 k-x24 

k-x19 k-x14 k-x15 k-x16 k-x17 k-x18 k-x13 

 

x25 x26 x27 x28 x29 x30 x31 

x32 z34 z35 z36 z37 z38 k-x32 

x33 z39    k-z39 k-x33 

x34 z40  k/2  k-z40 k-x34 

x35 z41    k-z41 k-x35 

x36 k-z38 k-z35 k-z36 k-z37 k-z34 k-x36 

k-x31 k-x26 k-x27 k-x28 k-x29 k-x30 k-x25 

 

x37 x38 x39 x40 x41 x42 x43 

x44 z42 z43 z44 z45 z46 k-x44 

x45 z47    k-z47 k-x45 

x46 z48    k-z48 k-x46 

x47 z49    k-z49 k-x47 

x48 k-z46 k-z43 k-z44 k-z45 k-z42 k-x48 

k-x43 k-x38 k-x39 k-x40 k-x41 k-x42 k-x37 
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x49 x50 x51 x52 x53 x54 x55 

x56 k-z25 k-z22 k-z23 k-z24 k-z21 k-x56 

x57 k-z10 k-z7 k-z8 k-z9 k-z6 k-x57 

x58 k-z15 k-z12 k-z13 k-z14 k-z11 k-x58 

x59 k-z20 k-z17 k-z18 k-z19 k-z16 k-x59 

x60 k-z5 k-z2 k-z3 k-z4 k-z1 k-x60 

k-x55 k-x50 k-x51 k-x52 k-x53 k-x54 k-x49 

 

k-y49 k-y44 k-y45 k-y46 k-y47 k-y48 k-y43 

k-y14 k-y9 k-y10 k-y11 k-y12 k-y13 k-8 

k-y21 k-y16 k-y17 k-y18 k-y19 k-y20 k-y15 

k-y28 k-y23 k-y24 k-y25 k-y26 k-y27 k-y22 

k-y35 k-y30 k-y31 k-y32 k-y33 k-y34 k-y29 

k-y42 k-y37 k-y38 k-y39 k-y40 k-y41 k-y36 

k-y7 k-y2 k-y3 k-y4 k-y5 k-y6 k-y1 

 

The magic constant of this concentric cube is S = 7k / 2. 

 Inside the concentric cube of order 7 is a concentric cube of order 5 with a magic constant  

S = 5k / 2. Furthermore, inside the concentric cube of order 5 is a magic cube of order 3 with a 

magic constant S = 3k / 2. 

 Our first step is to show the classic concentric magic cube of order 7 of this type, and it appears 

in figure 24.   
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Figure 24 

S = 1204, k = 344 

17 206 28 315 41 325 272 

58 295 139 87 231 194 200 

191 328 143 228 79 137 98 

190 147 326 232 77 135 97 

189 133 141 234 323 75 109 

238 51 275 70 174 221 175 

321 44 152 38 279 117 253 

 

212 73 94 101 309 125 290 

131 26 102 230 229 273 213 

168 119 259 254 104 124 176 

261 262 118 103 255 122 83 

249 140 145 146 151 278 95 

129 313 236 127 121 63 215 

54 271 250 243 35 219 132 

 

99 84 78 46 299 276 322 

301 40 3 142 337 338 43 

287 148 182 333 1 196 57 

42 332 310 20 186 12 302 

159 334 24 163 329 10 185 

294 6 341 202 7 304 50 

22 260 266 298 45 68 245 
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156 76 244 105 297 165 161 

285 173 308 107 62 210 59 

86 216 319 2 195 128 258 

284 30 48 172 296 314 60 

74 307 149 342 25 37 270 

136 134 36 237 282 171 208 

183 268 100 239 47 179 188 

 

312 160 280 251 67 53 81 

52 340 339 164 9 8 292 

130 157 15 181 320 187 214 

92 14 158 324 34 330 252 

178 13 343 11 162 331 166 

177 336 5 180 335 4 167 

263 184 64 93 277 291 32 

 

317 305 288 80 126 33 55 

233 281 108 217 223 31 111 

96 220 85 90 240 225 248 

88 222 226 241 89 82 256 

120 66 199 198 193 204 224 

61 71 242 114 115 318 283 

289 39 56 264 218 311 27 
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91 300 192 306 65 227 23 

144 49 205 257 113 150 286 

246 16 201 116 265 207 153 

247 197 18 112 267 209 154 

235 211 203 110 21 269 155 

169 293 69 274 170 123 106 

 

A concentric magic cube of order 7 of distinct primes appears in figure 25. 

 This magic cube is not easy to make. Inside is a concentric magic cube of order 5 with a magic 

constant S = 54515. Inside the cube of order 5 is a magic cube of order 3 with a magic constant  

S = 32709.  

Figure 25 

S = 76321, k = 21806 

1783 19429 2593 3373 14983 19423 14737 

1399 13417 17203 17047 6883 19 20353 

13267 14629 15727 859 4567 13339 13933 

20347 3943 19249 1483 19777 4903 6619 

787 11353 17383 17293 1033 10303 18169 

20809 4507 1693 17713 11119 19267 1213 

17929 9043 2473 18553 17959 9067 1297 
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9103 3583 5107 5737 18097 18757 15937 

823 14347 21163 9349 4099 5557 20983 

16993 3793 9883 20899 9463 10477 4813 

15259 6379 15739 12919 10369 9109 6547 

18307 13627 3673 3019 21397 12799 3499 

9967 16369 4057 8329 9187 16573 11839 

5869 18223 16699 16069 3709 3049 12703 

  

6247 4363 4297 21319 20743 1993 17359 

12073 4639 7 6607 21523 21739 9733 

13879 7723 9769 21613 1327 14083 7927 

8839 21727 20107 229 12373 79 12967 

19753 20359 2833 10867 19009 1447 2053 

11083 67 21799 15199 283 17167 10723 

4447 17443 17509 487 1063 19813 15559 

  

919 5743 14107 18199 13597 9319 14437 

19717 8803 523 18919 12757 13513 2089 

17209 13177 20143 157 12409 8629 4597 

9973 13093 3169 10903 18637 8713 11833 

16057 11149 9397 21649 1663 10657 5749 

5077 8293 21283 2887 9049 13003 16729 

7369 16063 7699 3607 8209 12487 20887 

  

 



63 

 

16693 17257 15607 13873 3967 8647 277 

20929 21493 15073 6163 3517 8269 877 

307 18493 2797 10939 18973 3313 21499 

1987 619 9433 21577 1699 21187 19819 

12157 373 20479 193 12037 21433 9649 

2719 13537 6733 15643 18289 313 19087 

21529 4549 6199 7933 17839 13159 5113 

  

21067 13183 15277 10567 1087 5443 9697 

19927 5233 17749 13477 12619 5437 1879 

6793 11329 11923 907 12343 18013 15013 

4729 12697 6067 8887 11437 15427 17077 

5623 9007 18133 18787 409 8179 16183 

6073 16249 643 12457 17707 7459 15733 

12109 8623 6529 11239 20719 16363 739 

  

20509 12763 19333 3253 3847 12739 3877 

1453 8389 4603 4759 14923 21787 20407 

7873 7177 6079 20947 17239 8467 8539 

15187 17863 2557 20323 2029 16903 1459 

3637 10453 4423 4513 20773 11503 21019 

20593 17299 20113 4093 10687 2539 997 

7069 2377 19213 18433 6823 2383 20023 

 

This concentric magic cube is shown in the picture "Russian nesting dolls" (see Fig. 26). 
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Figure 26 

 

 An attempt was made to make a concentric magic cube of order 7 of distinct primes with magic 

constant S < 76321. My attempts were not successful. I show two partial solutions (Fig. 27 and 

Fig. 28). 

 A challenge for the readers - find the edging! There is no guarantee that the problem has a 

solution. 
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Figure 27 

S = 69769, k = 19934 

y1 y2 y3 y4 y5 y6 y7 

y8 y9 y10 y11 y12 y13 y14 

y15 y16 y17 y18 y19 y20 y21 

y22 y23 y24 y25 y26 y27 y28 

y29 y30 y31 y32 y33 y34 y35 

y36 y37 y38 y39 y40 y41 y42 

y43 y44 y45 y46 y47 y48 y49 

 

x1 x2 x3 x4 x5 x6 x7 

x8 2857 7237 17683 5641 16417 k-x8 

x9 8761 4861 5827 15733 14653 k-x9 

x10 7333 13063 15271 14011 157 k-x10 

x11 15607 16747 4027 1483 11971 k-x11 

x12 15277 7927 7027 12967 6637 k-x12 

k-x7 k-x2 k-x3 k-x4 k-x5 k-x6 k-x1 
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x13 x14 x15 x16 x17 x18 x19 

x20 2143 7 8431 19387 19867 k-x20 

x21 10333 12541 17317 43 9601 k-x21 

x22 18211 14767 4483 10651 1723 k-x22 

x23 19081 2593 8101 19207 853 k-x23 

x24 67 19927 11503 547 17791 k-x24 

k-x19 k-x14 k-x15 k-x16 k-x17 k-x18 k-x13 

 

x25 x26 x27 x28 x29 x30 x31 

x32 11941 10831 8803 17377 883 k-x32 

x33 14947 16633 751 12517 4987 k-x33 

x34 73 5851 9967 14083 19861 k-x34 

x35 3823 7417 19183 3301 16111 k-x35 

x36 19051 9103 11131 2557 7993 k-x36 

k-x31 k-x26 k-x27 k-x28 k-x29 k-x30 k-x25 

 

x37 x38 x39 x40 x41 x42 x43 

x44 19597 19753 2011 463 8011 k-x44 

x45 10513 727 11833 17341 9421 k-x45 

x46 4441 9283 15451 5167 15493 k-x46 

x47 3361 19891 2617 7393 16573 k-x47 

x48 11923 181 17923 19471 337 k-x48 

k-x43 k-x38 k-x39 k-x40 k-x41 k-x42 k-x37 
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x49 x50 x51 x52 x53 x54 x55 

x56 13297 12007 12907 6967 4657 k-x56 

x57 5281 15073 14107 4201 11173 k-x57 

x58 19777 6871 4663 5923 12601 k-x58 

x59 7963 3187 15907 18451 4327 k-x59 

x60 3517 12697 2251 14293 17077 k-x60 

k-x55 k-x50 k-x51 k-x52 k-x53 k-x54 k-x49 

 

k-y49 k-y44 k-y45 k-y46 k-y47 k-y48 k-y43 

k-y14 k-y9 k-y10 k-y11 k-y12 k-y13 k-8 

k-y21 k-y16 k-y17 k-y18 k-y19 k-y20 k-y15 

k-y28 k-y23 k-y24 k-y25 k-y26 k-y27 k-y22 

k-y35 k-y30 k-y31 k-y32 k-y33 k-y34 k-y29 

k-y42 k-y37 k-y38 k-y39 k-y40 k-y41 k-y36 

k-y7 k-y2 k-y3 k-y4 k-y5 k-y6 k-y1 
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Figure 28 

S = 68999, k = 19714 

y1 y2 y3 y4 y5 y6 y7 

y8 y9 y10 y11 y12 y13 y14 

y15 y16 y17 y18 y19 y20 y21 

y22 y23 y24 y25 y26 y27 y28 

y29 y30 y31 y32 y33 y34 y35 

y36 y37 y38 y39 y40 y41 y42 

y43 y44 y45 y46 y47 y48 y49 

 

x1 x2 x3 x4 x5 x6 x7 

x8 16253 2141 14747 8501 7643 k-x8 

x9 2087 18617 14771 8093 5717 k-x9 

x10 1877 11831 4073 19463 12041 k-x10 

x11 17891 3083 2243 12671 13397 k-x11 

x12 11177 13613 13451 557 10487 k-x12 

k-x7 k-x2 k-x3 k-x4 k-x5 k-x6 k-x1 
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x13 x14 x15 x16 x17 x18 x19 

x20 1667 1637 7001 19403 19577 k-x20 

x21 8627 7817 18731 3023 11087 k-x21 

x22 19421 17417 1373 10781 293 k-x22 

x23 19433 4337 9467 15767 281 k-x23 

x24 137 18077 12713 311 18047 k-x24 

k-x19 k-x14 k-x15 k-x16 k-x17 k-x18 k-x13 

 

x25 x26 x27 x28 x29 x30 x31 

x32 2927 19697 12911 1523 12227 k-x32 

x33 16871 17807 593 11171 2843 k-x33 

x34 17783 3221 9857 16493 1931 k-x34 

x35 4217 8543 19121 1907 15497 k-x35 

x36 7487 17 6803 18191 16787 k-x36 

k-x31 k-x26 k-x27 k-x28 k-x29 k-x30 k-x25 

 

x37 x38 x39 x40 x41 x42 x43 

x44 19211 19709 8363 701 1301 k-x44 

x45 7703 3947 10247 15377 12011 k-x45 

x46 2531 8933 18341 2297 17183 k-x46 

x47 1427 16691 983 11897 18287 k-x47 

x48 18413 5 11351 19013 503 k-x48 

k-x43 k-x38 k-x39 k-x40 k-x41 k-x42 k-x37 
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x49 x50 x51 x52 x53 x54 x55 

x56 9227 6101 6263 19157 8537 k-x56 

x57 13997 1097 4943 11621 17627 k-x57 

x58 7673 7883 15641 251 17837 k-x58 

x59 6317 16631 17471 7043 1823 k-x59 

x60 12071 17573 4967 11213 3461 k-x60 

k-x55 k-x50 k-x51 k-x52 k-x53 k-x54 k-x49 

 

k-y49 k-y44 k-y45 k-y46 k-y47 k-y48 k-y43 

k-y14 k-y9 k-y10 k-y11 k-y12 k-y13 k-8 

k-y21 k-y16 k-y17 k-y18 k-y19 k-y20 k-y15 

k-y28 k-y23 k-y24 k-y25 k-y26 k-y27 k-y22 

k-y35 k-y30 k-y31 k-y32 k-y33 k-y34 k-y29 

k-y42 k-y37 k-y38 k-y39 k-y40 k-y41 k-y36 

k-y7 k-y2 k-y3 k-y4 k-y5 k-y6 k-y1 

 

Concentric magic cubes of order 8 

On the web page 

http://www.magic-SquareS.net/c-t-htm/c_prime.htm 

you will find the concentric magic cube of order 8 of distinct primes that appears in figure 29. 

 The magic constant of the cube is S = 39480. Inside is a concentric magic cube of order 6 with a 

magic constant S = 29610, this is the magic cube that appeared in figure 1. Inside the concentric 

cube of order 6 is an associative and pantriagonal cube of order 4 with a magic constant  

S = 19740. 

 

http://www.magic-squares.net/c-t-htm/c_prime.htm
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Figure 29 

S = 39480, k = 9870 

13 9859 6679 9829 2129 53 6869 4049 

1637 9781 103 8171 181 7577 9733 2297 

9511 349 3623 269 433 9787 7691 7817 

9631 257 7331 2477 9371 9413 521 479 

9283 1039 941 631 8837 661 8861 9227 

6803 709 3613 8443 9187 3541 2617 4567 

1493 8707 9043 907 8291 6701 1171 3167 

1109 8779 8147 8753 1051 1747 2017 7877 

 

811 9127 7841 5867 7211 2909 3931 1783 

6781 4831 4783 67 9811 4639 5479 3089 

4229 191 241 193 9473 9769 9743 5641 

409 331 577 5009 4751 9619 9323 9461 

7177 8273 9719 8933 1123 829 733 2693 

4967 8423 7499 8287 1789 1801 1811 4903 

7019 7561 6791 7121 2663 2953 2521 2851 

8087 743 2029 4003 2659 6961 5939 9059 

 

8431 1289 4951 4933 1063 8941 9013 859 

5717 131 761 379 9403 9497 9439 4153 

6151 8951 2437 3547 5309 8447 919 3719 

19 9643 3209 5573 2281 8677 227 9851 

2711 2143 8243 4877 6007 613 7727 7159 

3307 8311 5851 5743 6143 2003 1559 6563 

4133 431 9109 9491 467 373 9739 5737 

9011 8581 4919 4937 8807 929 857 1439 

 

8783 1181 8093 1759 1933 6379 2633 8719 

4201 337 8849 8821 1409 1307 8887 5669 

3671 7013 5903 2879 9007 1951 2857 6199 

8641 8009 3217 2767 8117 5639 1861 1229 

7523 9049 6073 5521 2333 5813 821 2347 

2719 4219 4547 8573 283 6337 5651 7151 

2791 983 1021 1049 8461 8563 9533 7079 

1151 8689 1777 8111 7937 3491 7237 1087 
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8669 1223 1483 7583 2267 7477 5197 5581 

3779 8543 8839 9277 173 1831 947 6091 

3917 4177 3533 9587 1297 5323 5693 5953 

5881 7487 4057 7537 4349 3797 2383 3989 

2381 31 4231 1753 7103 6653 9839 7489 

3803 449 7919 863 6991 3967 9421 6067 

6761 8923 1031 593 9697 8039 1327 3109 

4289 8647 8387 2287 7603 2393 4673 1201 

 

7529 7993 2111 3041 7789 3889 3947 3181 

3449 8419 3299 8317 1607 5419 2549 6421 

4021 9151 7867 3727 4127 4019 719 5849 

1481 3593 9257 3863 4993 1627 6277 8389 

2113 977 1193 7589 4297 6661 8893 7757 

7129 149 1423 4561 6323 7433 9721 2741 

7069 7321 6571 1553 8263 4451 1451 2801 

6689 1877 7759 6829 2081 5981 5923 2341 

 

3251 7717 6599 5351 8269 1709 37 6547 

6343 7349 3079 2749 7207 6917 2309 3527 

5927 127 9629 9677 397 101 9679 3943 

4027 547 9293 4861 5119 251 9539 5843 

7649 9137 151 937 8747 9041 1597 2221 

5449 8059 2371 1583 8081 8069 1447 4421 

3511 4391 5087 9803 59 5231 5039 6359 

3323 2153 3271 4519 1601 8161 9833 6619 

 

1993 1091 1723 1117 8819 8123 7853 8761 

7573 89 9767 1699 9689 2293 137 8233 

2053 9521 6247 9601 9437 83 2179 359 

9391 9613 2539 7393 499 457 9349 239 

643 8831 8929 9239 1033 9209 1009 587 

5303 9161 6257 1427 683 6329 7253 3067 

6703 1163 827 8963 1579 3169 8699 8377 

5821 11 3191 41 7741 9817 3001 9857 

 

The scheme for the concentric magic cube of order 8, based on the standard cube depicted in Fig. 

29, appears in figure 30.  
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Figure 30 

S = 4k 

x1 x2 x3 x4 x5 x6 x7 x8 

x9 x10 x11 x12 x13 x14 x15 x16 

x17 x18 x19 x20 x21 x22 x23 x24 

x25 x26 x27 x28 x29 x30 x31 x32 

x33 x34 x35 x36 x37 x38 x39 x40 

x41 x42 x43 x44 x45 x46 x47 x48 

x49 x50 x51 x52 x53 x54 x55 x56 

x57 x58 x59 x60 x61 x62 x63 x64 

 

x65 x66 x67 x68 x69 x70 x71 x72 

x73 z1 z2 z3 z4 z5 z6 k-x73 

x74 z7 z8 z9 z10 z11 z12 k-x74 

x75 z13 z14 z15 z16 z17 z18 k-x75 

x76 z19 z20 z21 z22 z23 z24 k-x76 

x77 z25 z26 z27 z28 z29 z30 k-x77 

x78 z31 z32 z33 z34 z35 z36 k-x78 

k-x72 k-x66 k-x67 k-x68 k-x69 k-x70 k-x71 k-x65 
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x79 x80 x81 x82 x83 x84 x85 x86 

x87 z37 z38 z39 z40 z41 z42 k-x87 

x88 z43     k-z43 k-x88 

x89 z44     k-z44 k-x89 

x90 z45     k-z45 k-x90 

x91 z46     k-z46 k-x91 

x92 k-z42 k-z38 k-z39 k-z40 k-z41 k-z37 k-x92 

k-x86 k-x80 k-x81 k-x82 k-x83 k-x84 k-x85 k-x79 

 

x93 x94 x95 x96 x97 x98 x99 x100 

x101 z47 z48 z49 z50 z51 z52 k-x101 

x102 z53     k-z53 k-x102 

x103 z54     k-z54 k-x103 

x104 z55     k-z55 k-x104 

x105 z56     k-z56 k-x105 

x106 k-z52 k-z48 k-z49 k-z50 k-z51 k-z47 k-x106 

k-

x100 

k-x94 k-x95 k-x96 k-x97 k-x98 k-x99 k-x93 
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x107 x108 x109 x110 x111 x112 x113 x114 

x115 z57 z58 z59 z60 z61 z62 k-x115 

x116 z63     k-z63 k-x116 

x117 z64     k-z64 k-x117 

x118 z65     k-z65 k-x118 

x119 z66     k-z66 k-x119 

x120 k-z62 k-z58 k-z59 k-z60 k-z61 k-z57 k-x120 

k-x114 k-x108 k-x109 k-x110 k-x111 k-x112 k-x113 k-x107 

 

x121 x122 x123 x124 x125 x126 x127 x128 

x129 z67 z68 z69 z70 z71 z72 k-x129 

x130 z73     k-z73 k-x130 

x131 z74     k-z74 k-x131 

x132 z75     k-z75 k-x132 

x133 z76     k-z76 k-x133 

x134 k-z72 k-z68 k-z69 k-z70 k-z71 k-z67 k-x134 

k-x128 k-x122 k-x123 k-x124 k-x125 k-x126 k-x127 k-x121 
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x135 x136 x137 x138 x139 x140 x141 x142 

x143 k-z36 k-z32 k-z33 k-z34 k-z35 k-z31 k-x143 

x144 k-z12 k-z8 k-z9 k-z10 k-z11 k-z7 k-x144 

x145 k-z18 k-z14 k-z15 k-z16 k-z17 k-z13 k-x145 

x146 k-z24 k-z20 k-z21 k-z22 k-z23 k-z19 k-x146 

x147 k-z30 k-z26 k-z27 k-z28 k-z29 k-z25 k-x147 

x148 k-z6 k-z2 k-z3 k-z4 k-z5 k-z1 k-x148 

k-x142 k-x136 k-x137 k-x138 k-x139 k-x140 k-x141 k-x135 

 

k-x64 k-x58 k-x59 k-x60 k-x61 k-x62 k-x63 k-x57 

k-x16 k-x10 k-x11 k-x12 k-x13 k-x14 k-x15 k-x9 

k-x24 k-x18 k-x19 k-x20 k-x21 k-x22 k-x23 k-x17 

k-x32 k-x26 k-x27 k-x28 k-x29 k-x30 k-x31 k-x25 

k-x40 k-x34 k-x35 k-x36 k-x37 k-x38 k-x39 k-x33 

k-x48 k-x42 k-x43 k-x44 k-x45 k-x46 k-x47 k-x41 

k-x56 k-x50 k-x51 k-x52 k-x53 k-x54 k-x55 k-x49 

k-x8 k-x2 k-x3 k-x4 k-x5 k-x6 k-x7 k-x1 

 

 An attempt was made to make this scheme a concentric magic cube of order 8 of distinct primes. 

The best result was the incomplete solution that appears in figure 31.  
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Figure 31 

S = 33600, k = 8400 

4817 2819 2269 7517 3067 4871 4783 3457 

4889 2741 2137 7523 2963 4909 4729 3709 

6067 2557 5009 5281 1373 7541 839 4933 

7019 1619 7349 1249 4289 1931 7247 2897 

5849 3319 8093 3833 5743 3253 1709 1801 

1951 6829 647 4273 3919 2617 5647 7717 

2731 5483 5557 3167 5039 797 6949 3877 

277 8233 2539 757 7207 7681 1697 5209 

 

x65 x66 x67 x68 x69 x70 x71 x72 

x73 5197 5521 5171 4373 677 4261 k-x73 

x74 2311 2699 7237 1361 6029 5563 k-x74 

x75 6803 919 4787 8053 311 4327 k-x75 

x76 5087 7937 1543 1747 7433 1453 k-x76 

x77 571 2267 3413 3469 8171 7309 k-x77 

x78 5231 5857 3049 6197 2579 2287 k-x78 

k-x72 k-x66 k-x67 k-x68 k-x69 k-x70 k-x71 k-x65 

 

 

 

 

 



78 

 

x79 x80 x81 x82 x83 x84 x85 x86 

x87 523 809 11 8269 8011 7577 k-x87 

x88 37 1213 8293 2621 4673 8363 k-x88 

x89 8161 7573 643 5807 2777 239 k-x89 

x90 8287 6911 137 2011 7741 113 k-x90 

x91 7369 1103 7727 6361 1609 1031 k-x91 

x92 823 7591 8389 131 389 7877 k-x92 

k-x86 k-x80 k-x81 k-x82 k-x83 k-x84 k-x85 k-x79 

 

x93 x94 x95 x96 x97 x98 x99 x100 

x101 179 6763 5717 3389 5689 3463 k-x101 

x102 8317 709 6397 6287 3407 83 k-x102 

x103 2503 8387 1399 2153 4861 5897 k-x103 

x104 2143 727 7823 31 8219 6257 k-x104 

x105 7121 6977 1181 8329 313 1279 k-x105 

x106 4937 1637 2683 5011 2711 8221 k-x106 

k-x100 k-x94 k-x95 k-x96 k-x97 k-x98 k-x99 k-x93 
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x107 x108 x109 x110 x111 x112 x113 x114 

x115 4951 7537 1667 1567 4241 5237 k-x115 

x116 7901 8087 71 7219 1423 499 k-x116 

x117 1187 181 8369 577 7673 7213 k-x117 

x118 1297 3539 6247 7001 13 7103 k-x118 

x119 6701 4993 2113 2003 7691 1699 k-x119 

x120 3163 863 6733 6833 4159 3449 k-x120 

k-x114 k-x108 k-x109 k-x110 k-x111 k-x112 k-x113 k-x107 

 

x121 x122 x123 x124 x125 x126 x127 x128 

x129 8237 2027 7283 5399 761 1493 k-x129 

x130 3797 6791 2039 673 7297 4603 k-x130 

x131 2473 659 6389 8263 1489 5927 k-x131 

x132 1439 5623 2593 7757 827 6961 k-x132 

x133 2347 3727 5779 107 7187 6053 k-x133 

x134 6907 6373 1117 3001 7639 163 k-x134 

k-x128 k-x122 k-x123 k-x124 k-x125 k-x126 k-x127 k-x121 
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x135 x136 x137 x138 x139 x140 x141 x142 

x143 6113 2543 5351 2203 5821 3169 k-x143 

x144 2837 5701 1163 7039 2371 6089 k-x144 

x145 4073 7481 3613 347 8089 1597 k-x145 

x146 6947 463 6857 6653 967 3313 k-x146 

x147 1091 6133 4987 4931 229 7829 k-x147 

x148 4139 2879 3229 4027 7723 3203 k-x148 

k-x142 k-x136 k-x137 k-x138 k-x139 k-x140 k-x141 k-x135 

 

3191 167 5861 7643 1193 719 6703 8123 

4691 5659 6263 877 5437 3491 3671 3511 

3467 5843 3391 3119 7027 859 7561 2333 

5503 6781 1051 7151 4111 6469 1153 1381 

6599 5081 307 4567 2657 5147 6691 2551 

683 1571 7753 4127 4481 5783 2753 6449 

4523 2917 2843 5233 3361 7603 1451 5669 

 

 A challenge is issued to the reader, find a complete solution. 

Dear readers! 

Should you find solutions to the proposed problems, please send them to the site 

http://primesmagicgames.altervista.org/wp/competitions/ 

Furthermore, if you find a better solution, please send it in.  

Links 

1. http://en.wikipedia.org/wiki/Magic_cube  

2. http://www.magic-SquareS.net/c-t-htm/c_prime.htm 

http://primesmagicgames.altervista.org/wp/competitions/
http://en.wikipedia.org/wiki/Magic_cube
http://www.magic-squares.net/c-t-htm/c_prime.htm
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3. http://primesmagicgames.altervista.org/wp/ 

4. Full size picture Fig. 26: 

http://s017.radikal.ru/i427/1410/01/9dac57fb20e9.jpg 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://primesmagicgames.altervista.org/wp/
http://s017.radikal.ru/i427/1410/01/9dac57fb20e9.jpg
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Abstract 

 This study has been inspired by questions asked by Charles Ashbacher in the Journal of 

Recreational Mathematics, vol. 29.2 concerning the Smarandache Deconstructive Sequence. 

This sequence is a special case of a more general concatenation and sequencing procedure which 

is the subject of this study. The properties of this kind of sequences are studied with particular 

emphasis on the divisibility of their terms by primes. 
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Introduction 

 In this article the concatenation of a and b is expressed by a_b or simply ab where there can be 

no misunderstanding. Multiple concatenations like abcabcabc will be expressed by 3(abc). 

We consider n different elements (or n objects) arranged (concatenated) one after the other in the 

following way to form: 

A=a1a2 … an. 

Infinitely many objects A, which will be referred to as cycles,  are concatenated to form the 

chain: 

B= a1a2 … an a1a2 … an a1a2 … an… 

B contains identical elements which are at equidistant positions in the chain. Let’s write B as 

 B=b1b2b3, … bk…..  where bk=aj when jk (mod n), 1jn. 

An infinite sequence C1, C2, C3, … Ck, …. is formed by sequentially selecting 1, 2, 3, …k, … 

elements from the chain B:  

 C1=b1=a1 

 C2=b2b3=a2a3 

 C3=b4b5b6=a4a5a6 (if n6, if n=5 we would have C3=a4a5a1) 

The number of elements from the chain B used to form the first k-1 terms of the sequence C is 

1+2+3+ … +k-1=(k-1)k/2. Hence  

2

)1k(k
2

2

k)1k(
1

2

k)1k(k bbbC 





 

 

 However, what is interesting to see is how Ck is expressed in terms of a1,…,an. For sufficiently 

large values of k, Ck will be composed of three parts: 

 The first part F(k)=au…an 

The middle part  M(k)=AA…A. The number of concatenated A’s depends on k. 

The last part L(k)=a1a2…aw 

Hence 

(1) Ck=F(k)M(k)L(k).            
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The number of elements used to form C1, C2, … Ck-1 is ((k-1)k)/2. Since the number of elements 

in A is finite there will be infinitely many terms Ck which have the same first element au. u can 

be determined from 

)n(modu1
2

k)1k(




. 

There can be at most n2 different combinations to form F(k) and L(k).  

 Let Cj and Ci be two different terms for which F(i)=F(j) and L(i)=L(j). They will then be 

separated by a number m of complete cycles of length n, i.e. 

mn
2

i)1i(

2

j)1j(







. 

Let’s write j=i+p and see if p exists so that there is a solution for p which is independent of i. 

 (i+p-1)(i+p)-(i-1)i=2mn 

 p2+p(2i-1)=2mn 

If n is odd we will put p=n to obtain n+2i-1=2m, or 

2

1i2n
m




. 

 If n is even we  put p=2n to obtain m=2n+2i-1. From this we see that the terms Ck have a 

peculiar periodic behaviour. The periodicity is p=n for odd n and p=2n for even n. Let’s illustrate 

this for n=4 and n=5 for which the periodicity will be p=8 and p=5 respectively. It is seen from 

table 1 that the periodicity starts for i=3. 

 Numerals are chosen as elements to illustrate the case n=5 (table 2). Let’s write i=s+k+pj , 

where s is the index of the term preceding the first periodical term, k=1,2,…,p is the index of 

members of the period and j is the number of the period (for convenience the first period is 

numbered 0). The first part of  Ci is denoted B(k) and the last part E(k). Ci is now given by the 

following expression, where q is the number of cycles concatenated between the first part B(k) 

and the last part E(k). 

(2) Ci=B(k)_qA_E(k),  where k is determined from i-sk (mod p)          
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Table 1 

n=4. A=abcd. B= abcdabcdabcdabcdabcd…… 

 CI Period 

# 

F(i) M(i) L(i) 

1 a  a   

2 bc  bc   

3 dab 1 d  ab 

4 cdab 1 cd  ab 

5 cdabc 1 cd  abc 

6 dabcda 1 d abcd a 

7 bcdabcd 1 bcd abcd  

8 abcdabcd 1  2(abcd)  

9 abcdabcda 1  2(abcd) a 

10 bcdabcdabc 1 bcd abcd abc 

11 dabcdabcdab 2 d 2(abcd) ab 

12 cdabcdabcdab 2 cd 2(abcd) ab 

13 cdabcdabcdabc 2 cd 2(abcd) abc 

14 dabcdabcdabcda 2 d 3(abcd)  a 

15 bcdabcdabcdabcd 2 bcd 3(abcd)  

16 abcdabcdabcdabcd 2  4(abcd)  

17 abcdabcdabcdabcda 2  4(abcd) a 

18 bcdabcdabcdabcdabc 2 bcd 3(abcd) abc 

19 dabcdabcdabcdabcdab 3 d 4(abcd) ab 

20 cdabcdabcdabcdabcda

b 

3 cd 4(abcd) ab 
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Table 2 

n=5. A=12345. B= 123451234512345……… 

 

I CI k q F(i)/B(k) M(I) L(i)/E(k) 

1 1   1   

s=2 23   23   

 j=0      

3 451 1 0 45  1 

4 2345 2 0 2345   

5 12345 3 1  12345  

6 123451 4 1  12345 1 

7 2345123 5 0 2345  123 

 j=1      

3+5j 45123451 1 j 45 12345 1 

4+5j 234512345 2 j 2345 12345  

5+5j 1234512345 3 j+1  2(12345)  

6+5j 12345123451 4 j+1  2(12345) 1 

7+5j 234512345123 5 j 2345 12345 123 

 j=2      

3+5j 4512345123451 1 j 45 2(12345) 1 

4+5j 23451234512345 2 j 2345 2(12345)  

…       
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The Smarandache Deconstructive Sequence 

 The Smarandache Deconstructive Sequence of integers [1] is constructed by sequentially 

repeating the digits 1-9 in the following way: 

 1,23,456,789123,4567891,23456789,123456789,1234567891, … 

The sequence was studied in a booklet by Kashihara [2] and a number of questions on this 

sequence were posed by Ashbacher [3]. In thinking about these questions two observations led to 

this study. 

1. Why did Smarandache exclude 0 from the integers used to create the sequence? After all 0 is 

indispensible in all arithmetics most of which can be done using 0 and 1 only. 

2. The process used to create the Deconstructive Sequence is a process which applies to any set 

of objects as has been shown in the introduction. 

The periodicity and the general expression for terms in the “generalized deconstructive 

sequence”  shown in the introduction may be the most important results of this study. These 

results will now be used to examine the questions raised by Ashbacher. It is worth noting that 

these divisibility questions are dealt with in base 10 although only the nine digits 

1,2,3,4,5,6,7,8,9 are used to express numbers. In the last part of this article questions on 

divisibility will be posed for a deconstructive sequence generated from A=”0123456789”. 

 For i > 5 (s = 5) any term Ci in the sequence is composed by concatenating a first part B(k), a 

number q of cycles A=”123456789” and a last part E(k), where i = 5 + k + 9j, k = 1,2,…9,  

j  0, as expressed in (2) and q = j or j + 1 as shown in table 3. 

 Members of the Smarandache Deconstructive Sequence are now interpreted as decimal integers. 

The factorization of B(k) and  E(k) is shown in table 3. The last two columns of this table will be 

useful later in this article. 

 Together with the factorization of the cycle A=123456789=32 *3607 * 3803 it is now possible to 

study some divisibility properties of the sequence. We will first find expressions for Ci for each 

of the 9 values of k. In cases where E(k) exists let’s introduce u = 1 + log10E(k). We also define 

the function (j) so that (j) = 0 for j = 0 and (j) = 1 for j > 0. It is possible to construct one 

algorithm to cover all the nine cases but more functions like (j) would have to be introduced to 

distinguish between the numerical values of the strings “” (empty string) and “0” which are both 

evaluated as 0 in computer applications. In order to avoid this four formulas are used: 

  

 

 



88 

 

Table 3 

Factorization of Smarandache Deconstructive Sequence 

i k B(k) q E(k) Digit sum 3|Ci 

? 

6+9j 1 789=3263 j 123=341 30+j45 3 

7+9j 2 456789=34335

41 

j 1 40+j45 No 

8+9j 3 23456789 j  44+j45 No 

9+9j 4  j+1  (j+1)45 93z 

* 

10+9j 5  j+1 1 1+(j+1)4

5 

No 

11+9j 6 23456789 j 123=341 50+j45 No 

12+9j 7 456789=34335

41 

j 123456=26

3643 

60+j45 3 

13+9j 8 789=3263 j+1 1 25+(j+1)

45 

No 

14+9j 9 23456789 j 123456=26

3643 

65+j45 No 

 

*) where z depends on j. 

For k=1, 2, 6, 7 and 9: 

                                                   j-1 

(3)    C5+k+9j = E(k) + δ(j) * A * ∑ 109r + B(k) * 109j+u . 
                                                       r=0                     

For k=3: 

                                       j-1 

(4)   C5+k+9j = δ(j) * A * ∑ 109r + B(k)* 109j . 
                                         r=0 
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For k=4: 

                               j 

(5)   C5+k+9j = A * ∑ 109r . 

                               r=0                        

For k=5 and 8: 

                                                        j 

(6)   C5+k+9j = E(k) + A * 10u * ∑ 109r + B(k) * 109(j+1)+u . 

                                                      r=0 

 Before dealing with the questions posed by Ashbacher we recall the familiar rules: An even 

number is divisible by 2; a number whose last two digit form a number which is divisible by 4 is 

divisible by 4.  

 In general we have the following: 

Theorem. Let N be an n-digit integer such that N > 2 , then N is divisible by 2 if and only if 

the number formed by the  last digits of N is divisible by 2. 

Proof. To begin with we note that: 

If x divides a and x divides b then x divides (a+b). 

If x divides one but not the other of a and b then x does not divide (a+b). 

If x does not divides neither a nor b then x may or may  not divide (a+b). 

Let’s write the n-digit number in the form a * 10 + b. We then see from the following that  

a *10  is divisible by 2. 

 10  0 (mod 2) 

 100  0 (mod 4) 

 1000 = 23 *53  0 (mod 23) 

 … 

 10  0 (mod 2) 

and then 

 a10  0 (mod 2) independent of a. 
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Now let b be the number formed by the  last digits of  N. We see from the introductory remark 

that N is divisible by 2 if and only if the number formed by the  last digits is divisibele by 2. 

Question 1. Does every even element of the Smarandache Deconstructive Sequence contain at 

least three instances of the prime 2 as a factor? 

Question 2. If we form a sequence from the elements of the Smarandache Deconstructive 

Sequence that end in a 6, do the powers of 2 that divide them form a montonically increasing 

sequence? 

These two questions are related and are dealt with together.  From the previous analysis we know 

that all even elements of the Smarandache Deconstructive Sequence end in a 6. For i  5 they 

are: 

 C3 = 456 = 57 * 23 

 C5 = 23456 = 733*25  

For i > 5 they are of the forms: 

 C12+9j and C14+9j which both end in …789123456. 

Examining the numbers formed by the 6, 7 and 8 last digits for divisibility by 26, 27 and 28 

respectively we have: 

 123456=26 * 3 * 643 

 9123456=27 * 149 * 4673 

 89123456 is not divisible by 28. 

From this we conclude that all even Smarandache Deconstructive Sequence elements for i  12 

are divisible by 27 and that no elements in the sequence are divisible by higher powers of 2 than 

7.  

Answer to question 1. Yes. 

Answer to question 2. The sequence is monotonically increasing for i  12. For i  12 the powers 

of 2 that divide even elements remain constant=27. 

Question 3. Let x be the largest integer such that 3x | i and y the largest integer such that 3y | Ci. 

Is it true that x is always equal to y? 

From table 3 we se that the only elements Ci of the Smarandache Deconstructive Sequence 

which are divisible by powers of 3 correspond to i = 6 + 9j, 9 + 9j, or 12 + 9j. Furthermore, we 



91 

 

see that i = 6 + 9j and C6+9j are divisible by 3 no more no less. The same is true for i = 12 + 9j 

and C12+9j. So the statement holds in these cases. 

From the conguences 

 9 + 9j  0 (mod 3x) for the index of the element 

and 

 45(1 + j)  0 (mod 3y) for the corresponding element. 

we conclude that x = y.  

Answer to question 3: The statement is true. It is interesting to note that, for example the 729 

digit number C729 is divisible by 729. 

Question 4. Are there other patterns of divisibility in this sequence? 

A search  for other patterns would continue by examining divisibility by the next lower primes 5, 

7, 11, … It is obvious from table 3 and the periodicity of the sequence that there are no elements 

divisible by 5. The algorithms will prove very useful. For each value of k the value of Ci depends 

on j only. The divisibilty by a prime p is therefore determined by finding out for which values of 

j and k the congruence Ci0 (mod p) holds. We evaluate 

     j-1                109j – 1 

    ∑ 109r = 

    r=0                 109 – 1  . 

and introduce G = 109 - 1. We note that G=34 * 37 * 333667. From formulas (3) to (6) we now 

obtain: 

For k=1,2,6,7 and 9: 

(3´) Ci * G = 10u * ((j) * A + B(k) * G) * 109j+E(k) * G - 10u *(j) * A.                      

For k=3: 

(4´) Ci * G = (((j) * A+B(k) * G) * 109j - (j) * A.                          

For k=4: 

(5´) Ci * G = A * 109j – A.             

 For k=5 and 8: 

(6´) Ci *G = 10u+9(A + B(k) * G) *109j+E(k) * G-10u * A.                        
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The divisibility of Ci by a prime p other than 3, 37 and 333667 is therefore determined by 

solutions for j to the congruences CiG  0 (mod p) which are of the form  

(7) a * (109)j + b  0 (mod p).                          

Table 4 shows the results from computer implementation of the congruences. The appearance of 

elements divisible by a prime p is periodic, the periodicity is given by j = j1 + m * d, m = 1, 2, 3, 

… .  The first element divisible by p appears for i1 corresponding to j1. In general the terms Ci 

divisible by p are C5+k+9(j1 + md), where d is specific to the prime p and m=1, 2, 3,… .We note from 

table 4 that d is either equal to p - 1 or a divisor of p - 1 except for the case p=37 which as we 

have noted is a factor of A.  Indeed this periodicity follows from Euler’s extension of Fermat’s 

little theorem because if we write (mod p): 

 a * (109)j + b = a * (109)j
1

+md + b  a * (109)j
1 + b for d = p - 1 or a divisor of p - 1. 

Finally we note that the periodicity for p=37 is d=37. 

Question: Table 4 indicates some interesting patterns. For instance, the primes 19, 43 and 53 

only divide elements corresponding to k=1, 4 or 7 for j < 150 which was set as an upper limit for 

this study. Similarly, the primes 7,11, 41, 73, 79 and 91 only divides elements corresponding to  

k = 4. Is 5 the only prime that cannot divide an element of the Smarandache Deconstructive 

Sequence? 

Table 4 

Smarandache Deconstructive Sequence elements divisible by p 

p=7 k 4    p=11 k 4 

d=2 i1 18    d=2 i1 18 

 j1 1     j1 1 

 

p=13 k 4 8 9 

d=2 i1 18 22 14 

 j1 1 1 0 
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p=17 k 1 2 3 4 5 6 7 8 9 

d=16 i1 6 43 44 144 100 101 138 49 95 

 j1 0 4 4 15 10 10 14 4 9 

 

p=19 k 1 4 7 

d=2 i1 15 18 21 

 j1 1 1 1 

 

p=23 k 1 2 3 4 5 6 7 8 9 

d=22 i1 186 196 80 198 118 200 12 184 14 

 j1 20 21 8 21 12 21 0 19 0 

 

p=29 k 1 2 3 4 5 6 7 8 9 

d=28 i1 24 115 197 252 55 137 228 139 113 

 j1 2 12 21 27 5 14 24 14 11 

 

p=31 k 3 4 5 

d=5 i1 26 45 19 

 j1 2 4 1 

 

p=37 k 1 2 3 4 5 6 7 8 9 

d=37 i1 222 124 98 333 235 209 111 13 320 

 j1 24 13 10 36 25 22 11 0 34 
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p=41 k 4  P=43 1 4 7 

d=5 i1 45  d=7 33 63 30 

 j1 4   3 6 2 

 

p=47 k 1 2 3 4 5 6 7 8 9 

d=46 i1 150 250 368 414 46 164 264 400 14 

 j1 16 27 40 45 4 17 28 43 0 

 

p=53 k 1 4 7 

d=13 i1 24 117 12 

 j1 2 12 9 

 

p=59 k 1 3 5 6 7 8 9 

d=58 i1 267 413 109 11 255 256 266 

 j1 29 45 11 0 27 27 28 

 

p=61 k 2 4 6  p=67 k 4 8 9 

d=20 i1 79 180 101  d=11 i1 99 67 32 

 j1 8 19 10   j1 10 6 2 
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p=71 k 1 3 4 5 7 

d=35 i1 114 53 315 262 201 

 j1 12 5 34 28 21 

 

p=73 k 4  p=79 k 4 

d=8 i1 72  d=13 i1 117 

 j1 7   j1 12 

 

p=83 k 1 2 4 6 7 8 9 

d=41 i1 348 133 369 236 21 112 257 

 j1 38 14 40 25 1 11 27 

 

p=89 k 2 4 6 

d=44 i1 97 396 299 

 j1 10 43 32 

 

p=97 k 1 2 3 4 5 6 7 8 9 

d=32 i1 87 115 107 288 181 173 201 202 86 

 j1 9 12 11 31 19 18 21 21 8 

 

3. A Deconstructive Sequence generated by the cycle A=0123456789. 

Instead of sequentially repeating the digits 1-9 as in the case of the Smarandache Deconstructive 

Sequence we will use the digits 0-9 to form the corresponding sequence: 
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 0,12,345,6789,01234,567890,1234567,89012345,678901234,678901234,56789012345,6

78901234567, … 

 In this case the cycle has n = 10 elements. As we have seen in the introduction the sequence then 

has a period = 2n = 20. The periodicity starts for i = 8. Table 5 shows how for i > 7  any term Ci 

in the sequence is composed by concatenating a first part B(k), a number q of cycles 

A=”0123456789” and a last part E(k), where i = 7 + k + 20j, k = 1,2,…20, j  0, as expressed in 

(2) and q = 2j, 2j + 1 or 2j + 2. In the analysis of the sequence it is important to distinguish 

between the cases where E(k) = 0, k = 6,11,14,19 and cases where E(k) does not exist, i.e. 

k = 8,12,13,14. In order to cope with this problem we introduce a function u(k) which will at the 

same time replace the functions (j) and u=1+log10E(k) used previously.  u(k) is defined as 

shown in table 5. It is now possible to express Ci  in a single formula 

                                                   q(k)+2j-1 

(8)   Ci = C7+k+20j = E(k) + A *   ∑  (1010)r + B(k) * (1010)q(k)+2j) * 10u(k) . 

                                                   r=0 

 The formula for Ci was implemented modulus prime numbers less then 100. The result is shown 

in table 6 for p  41. Again we note that the divisibility by a prime p is periodic with a period d 

which is equal to p - 1 or a divisor of p - 1, except for  p =11 and p = 41 which are factors of  

1010 - 1.  The cases p = 3 and 5 have very simple answers and are not included in table 6. 

Table 5 

n=10, A=0123456789 

i k B(k) q E(k) u(k) 

8+20j 1 89 2j 012345=35823 6 

9+20j 2 6789=33173 2j 01234=2617 5 

10+20j 3 56789=109521 2j 01234=2617 5 

11+20j 4 56789=109521 2j 012345=35823 6 

12+20j 5 6789=33173 2j 01234567=1279721 8 

13+20j 6 89 2j+1 0 1 

14+20j 7 123456789=3236073803 2j 01234=2617 5 

15+20j 8 56789=109521 2j+1  0 

16+20j 9  2j+1 012345=35823 6 
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17+20j 10 6789=33173 2j+1 012=223 3 

18+20j 11 3456789=37971697 2j+1 0 1 

19+20j 12 123456789=3236073803 2j+1  0 

20+20j 13  2j+2  0 

21+20j 14  2j+2 0 1 

22+20j 15 123456789=3236073803 2j+1 012=223 3 

23+20j 16 3456789=37971697 2j+1 012345=35823 6 

24+20j 17 6789=33173 2j+2  0 

25+ 20j 18  2j+2 01234=2617 5 

26+20j 19 56789=109521 2j+2 0 1 

27+20j 20 123456789=3236073803 2j+1 01234567=1279721 8 

 

Table 6 

Divisibility of the 10-cycle destructive sequence by primes 7  p  41 

p=7 k 3 6 7 8 11 12 13 14 15 18 19 20 

d=3 i1 30 13 14 15 38 59 60 61 22 45 46 47 

 j1 1 0 0 0 1 2 2 2 0 1 1 1 

 

p=11 k 1 2 3 4 5 6 7 8 9 10 

d=11 i1 88 9 110 211 132 133 74 35 176 137 

 j1 4 0 5 10 6 6 3 1 8 6 

 k 11 12 13 14 15 16 17 18 19 20 

 i1 18 219 220 221 202 83 44 185 146 87 

 j1 0 10 10 10 9 3 1 8 6 3 
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p=13 k 2 3 4 12 13 14 

d=3 i1 49 30 11 59 60 61 

 j1 2 1 0 2 2 2 

 

p=17 k 1 5 10 12 13 14 16 

d=4 i1 48 32 37 79 80 81 43 

 j1 2 1 1 3 3 3 1 

 

p=19 k 1 2 3 4 5 10 12 13 14 16 

d=9 i1 128 149 90 31 52 117 179 180 181 63 

 j1 6 7 4 1 2 5 8 8 8 2 

 

p=23 k 1 2 3 4 5 10 12 13 14 16 

d=11 i1 168 149 110 71 52 217 219 220 221 223 

 j1 8 7 5 3 2 10 10 10 10 10 

 

p=29 k 2 4 10 12 13 14 16 

d=7 i1 129 11 97 139 140 141 43 

 j1 6 0 4 6 6 6 1 

 

p=31 k 3 9 12 13 14 17 

d=3 i1 30 56 59 60 61 64 

 j1 1 2 2 2 2 2 
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p=37 k 2 3 4 12 13 14 

d=3 i1 9 30 51 59 60 61 

 j1 0 1 2 2 2 2 

 

p=41 k 1 2 3 4 5 6 7 8 9 10 

d=41 i1 788 589 410 231 32 353 614 615 436 117 

 j1 39 29 20 11 1 17 30 30 21 5 

 k 11 12 13 14 15 16 17 18 19 20 

 i1 678 819 820 821 142 703 384 205 206 467 

 j1 33 40 40 40 6 34 10 9 9 22 
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Abstract 

 

We study the proportion of zero digits in the decimal (base 10) representation of N!, building on 

earlier work in the Journal of Recreational Mathematics by H. L. Nelson and Charles 

Ashbacher.  The trailing zeroes (zeroes to the right of the rightmost nonzero digit) and internal 

zeroes (zeroes to the left of the trailing zeroes) are considered separately. 
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Introduction 

 In [1], Ashbacher investigates the proportion of zero digits in the decimal representation of !N , 

continuing earlier work by Nelson in [2].  We add to this investigation and answer a question 

posed by Ashbacher.  In discussing the digits, we shall always be referring to the decimal (base 

10) representation. 

Trailing Zeroes 

By a trailing zero, we mean a zero to the right of the rightmost nonzero digit.  The number of 

trailing zeroes of !N  is determined by the number of 2’s and 5’s in its prime decomposition.  It 

is easy to see there are always more 2’s than 5’s, so we concentrate on counting the number of 

5’s that divide !N .  Each multiple of 5 less than or equal to N  adds one, each multiple of 25 

adds another one, each multiple of 125 adds yet another one, and so forth.  Thus the number 

( )T N  of trailing zeroes in the decimal representation of !N  is 

 
1

( )
5k

k

N
T N





 
  

 
  

where       is the floor function, the greatest integer no larger than its argument.  The quantity 

/ 5kN    is zero when 5k N , that is, when 5logk N    , so 

 
5log

1

( ) .
5

N

k
k

N
T N

  



 
  

 
  

  

I thought there was a chance this result might be new but, alas, it is prevalent on the Internet.  

See, for example, [3], [4], and [5]. 

The number of digits in !N  is 10( ) log ! 1,D N N     so the proportion of trailing zeroes is 

exactly ( ) ( ) / ( )P N T N D N .  See Table 1 for the average value of ( )P N  over ranges of a 

thousand at a time.  These numbers agree with those of Ashbacher who did a direct count. 
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Table 1 

The Mean Proportion of Trailing Zeroes in the Digits of N! 

 

Range of N 

 

   P(N) 

 

( )P N  

1000-1999 0.090864 0.091556 

2000-2999 0.084045 0.084666 

3000-3999 0.080202 0.080443 

4000-4999 0.077490 0.077695 

5000-5999 0.075460 0.075637 

 

 Ashbacher asks how ( )P N  behaves as N  goes to infinity.  To answer this question, first 

observe that  

 
1 0

( ) / 4.
15 5

1
5

k k
k k

N N N
T N N N N

 

 

 
      

  
                                                           (1) 

On the other hand, 

 

5
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1

5
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       log .
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 

  

 
                            

 
      

 

 
(2) 

 

Hence ( )T N  is asymptotic to / 4N by which we mean that their ratio converges to 1 as N  goes 

to infinity.  Hart, et al., in [6] also obtain the / 4N result but without the explicit non-asymptotic 

bounds provided by (1) and (2). 
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 Looking now at ( )D N , the number of digits in !N , we have 10( ) log ! 1.D N N    We apply a 

simple form of Stirling’s formula [4] which asserts that ln !N is asymptotic to lnN N N  where 

ln is the natural logarithm.  Then ( )D N  is asymptotic to 10log ! ln !/ ln10N N which is 

asymptotic to  ln / ln10.N N N  Finally, the proportion ( )P N  of trailing zero digits in the 

digits of !N  is ( ) / ( )T N D N  which is asymptotic to  

 
 

/ 4 (ln10) / 4
( ) .

ln / ln10 ln 1

N
P N

N N N N
 

 
 

 

For example, (10,000) 0.0700785P    and (10,000) 0.0701123P   .  In answer to 

Ashbacher’s question, ( )P N  converges to 0 at a slow logarithmic rate. 

Internal Zeroes 

We call the digits to the left of the trailing zeroes internal digits.  Clearly the leftmost and 

rightmost internal digits are nonzero.    These digits we call boundary digits.  The non-boundary 

internal digits may be zero.  We find it necessary to make an assumption:  

Assumption A:  On average, one tenth of the non-boundary internal digits are zero. 

If so, then the number of internal zeroes (non-trailing zeroes) is on average 

[ ( ) ( ) 2] /10D N T N  .  The proportion of internal zeroes among all the digits is then on average 

 
1 ( ) 2

( ) 1 .
10 ( )

T N
Q N

D N

 
  

 
 

( )Q N  is asymptotic to 

 
1 (ln10) / 4

( ) 1 .
10 ln 1

Q N
N

 
  

 
 

In Table 2 we compare the mean values of ( )Q N  and ( )Q N  to the actual values obtained by 

Ashbacher. 
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Table 2 

The Mean Proportion of Internal Zeroes in the Digits of !N  

Under Assumption A 

 

Range of N 

 

Actual Mean 

from [1] 

 

( )Q N  

 

( )Q N  

1000-1999 0.091023 0.090862 0.090844 

2000-2999 0.091576 0.091568 0.091553 

3000-3999 0.091836 0.091961 0.091956 

4000-4999 0.092278 0.092237 0.092231 

5000-5999 0.092402 0.092443 0.092436 

 

Conclusion 

In summary, we have obtained a rather complete description of the trailing zeros of the digits of

!N .  For internal zeroes we had to make an assumption.  

Question:  Is Assumption A valid?  If not, what can replace it? 
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     Abstract 

 The meaning of period length is explained as a basis for understanding the significance of the 

number three.  When an odd number is multiplied by three, a larger odd number is created with 

the same period length.  This multiplication by three can take place again and again, but there is 

a limit.  Here, only period lengths of six are examined, but many possibilities are demonstrated 

in a table. 
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 When one (1.000…) is divided by any number not divisible by two or five, the result is a 

repeating decimal.  The division eventually results in a remainder of one, at which point the 

repetition begins, since you divided into one in the first place.  The number of digits in the 

quotient after the decimal point and before the repetition begins is the period length. 

The following are two examples of the results of two such divisions: 

  1.000 / 77  =  0.012987012987 

  1.000 / 91  =  0.010989010989 

The period length of 77 is six, and the period length of 91 is also six. 

 In calculating the period lengths of many odd numbers, I have found that nearly all period 

lengths are either a number one less than the odd number, or a simple fraction thereof.  Simple 

fractions include one half (13, 31, 43, 47, 67, 71, and 89), one fourth (53), one eighth (41), and 

one ninth (73).   

 I knew, for example, that the period length of 23 is 22.  In my research  I had reached 69 and 

was totally surprised to discover its period length is also 22.  The number one less than 69 is 68.  

Half of that is 34, and half of that is 17.  Is 17 related to 22?  I didn’t think so.  Finally I realized 

that 69 is three times 23. 

 As shown in Table 1, there are many examples where the multiplication by three of an odd 

number whose period length is known will produce a larger odd number with the same period 

length.   

Table 1 

The Period Lengths Are The Same 

Odd   Period   Times  Period 

Number  Length              Three  Length   

   7      6       21      6 

  11           2     33      2 

  13           6     39      6 

  17         16     51     16 

  19        18     57     18 

  21             6     63                      6 

  23           22          69     22 
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  29          28          87     28 

  31           15          93      15 

  41                   5       123      5 

  43            21       129     21 

  47            23       141     23 

  49            42      147     42 

  53            13      159     13 

  59            58       177     58 

  67           33       201                33 

  69            22       207                22 

  71            35       213                35 

  73                   8               219                  8 

  89            44      267                44  

 The numbers 7, 13, and 77 have period lengths of six.  7 times 13 is 91, which also has a period 

length of six.  13 times 77 is 1001, which has a period length of six (see Table 2), but I chose not 

to count numbers greater than three digits.  Doing research for a completely different reason, I 

found that 259 has a period length of six. 

 Earlier I discussed multiplication of odd numbers by three, which results in sixteen numbers less 

than one thousand that all have period lengths of six.  They are: 7, 13, 21, 39, 63, 77, 91, 117, 

189,  231, 259, 273, 351, 693, 777, and 819.  I found it interesting that 7, 77, and 777 all have 

period lengths of six. 

Table 2   

Interesting Relationship of Period Lengths  (P.L.) 

 N      10N  + 1     P. L. = 2 N 

 1   11   2 

 2            101   4 

 3          1001   6 
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 4        10001   8 

 5      100001            10 

 Multiplication by three can take place again and again, but there are limits beyond which the 

period lengths are no longer six.  Multiplying 7 by 3 four times makes 567, which has a period 

length of 18.  Likewise,  multiplying 13 by 3 four times makes 1053, which also has a period 

length of 18. 

 Having multiplied the two smallest numbers (7 and 13) by 3 four times, I thought I would do the 

same with the next smallest number (21), which was rather silly of me.  I didn’t stop to realize 

that 21 is already a multiple of three!  Thus I multiplied 7 by 3 five times.  This produces 1701 

with a period length of 54. 

 The first three multiplications by 3 always create numbers with period lengths of 6, the fourth 

time with 18 and the fifth time with 54.  Notice that 6 x 3 = 18 and 18 x 3 = 54.   

 Finally, I chose to find a divisor of one by multiplying seven by 3 six times and predicting the 

period length of the product (5103) to be 162.  This turned out to be true.   

Table 3 

Multiplications of Seven by Threes 

 Divisor     Period 

 of One                Length 

    7 x 30 = 7 x 1 = 7                    6 

    7 x 31 = 7 x 3 = 21                    6 

    7 x 32 = 7 x 9 = 63                    6 

    7 x 33 = 7 x 27 = 189                   6 

    7 x 34 = 7 x 81 = 567                  18 

    7 x 35 = 7 x 243 = 1701      54 

    7 x 36 = 7 x 729 = 5103                162  
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Abstract 

 

 The man known simply as al-Kashi was born in Persia, now the modern nation of Iran, in the 

later part of the fourteenth century. He rose from a state of severe poverty to become an 

accomplished mathematician and scientist, working in many areas. 

 His textbook Key to Arithmetic (Miftah al-Hisab) and the abbreviated version Concise 

Exposition of the Key (Talkhis Al-Miftah) was used to teach mathematics for approximately 

two centuries in Persia and the Ottoman Empire. This paper is a brief description of his life along 

with some of his accomplishments.  

 The source for the material in this paper is “An Analysis of the Contents and Pegagogy of Al-

Kashi’s 1427 ‘Key to Arithmetic’ (Miftah Al-Hisab)” by Osama Hekmatt Ta’ani, his Doctor of 

Philosophy dissertation at New Mexico State University. 
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 The full name of the man known as al-Kashi was Ghiyath al-Din Jamshid bin Mas’ud bin 

Mahmood al-Tabeeb al-Kashi and he was born in the Persian (now Iranian) town of Kashan in 

1380 CE. The name al-Kashi is the result of the common practice of the time of assigning a 

nickname based on the city of birth. Ghiyath al-Din is another nickname and means “the rescuer 

of religion.” His first name was Jamshid, and the word “bin” means “son-of” and the names of 

his father and grandfather were Mas’ud and Mahmood respectively. Al-Tabeeb means “the 

physician,” his profession at the start of his life in science. From this point on he will be referred 

to as al-Kashi.  

 Al-Kashi was born into severe poverty and was entirely self-taught, his first recorded activity in 

science was his observation of a lunar eclipse in 1406. One year later his first book, The Ladder 

of Heavens of Solution for Difficulties Met by Forerunners in Determining Distances and 

Volumes [of Celestial Bodies] was published.  

 Al-Kashi was very precise in his computations, in the introduction to his later work Treatise on 

the Circumference (Al-Risala al-Muhityyah) he states that with the current assumed size of 

the sphere of fixed stars of 6 *105 diameters of the Earth his goal is to compute the value of π so 

that the error would be smaller than the width of a single horse hair. His computation of π was 

done in sexagesimal (base 60) digits.  

 After the publication of his second book Khaqani Zij, al-Kashi was invited to the city of 

Samarqand (in present day Uzbekistan) by Ulugh Beg, an enlightened ruler that actively 

promoted learning and scholarship. Ulugh Beg asked al-Kashi to create an observatory in 

Samarqand that was larger than the one in Margha in Persia.  Al-Kashi worked in that 

observatory until he died in 1429, leaving behind seven major works in mathematics and 

seventeen in astronomy. It was in 1427 when al-Kashi completed his compendium Key to 

Arithmetic (Miftah al-Hiab).  

 Key to Arithmetic is composed of five sections: arithmetic of whole numbers, arithmetic of 

fractions, computations with sexagesimals, geometry and algebra. It was used as a mathematics 

textbook throughout the Islamic world to teach practical mathematics to a wide variety of 

professionals, from merchants and builders to astronomers and judges.  

 When the Ottoman Empire expanded out to its greatest extent, the Key to Arithmetic and the 

companion shortened version Concise Exposition of the Key were translated and used to teach 

mathematics throughout the vast lands of the empire.  

 Once the Ottoman Empire controlled the Arabian Peninsula in the sixteenth century, judges in 

Mecca studied Key to Arithmetic in order to learn the mathematics needed to solve inheritance 

problems. Subsequent mathematics textbooks published in the lands controlled by the empire 

also relied on the contents of Key to Arithmetic as well as the concise version.  
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 Some historians refer to al-Kashi as the second Ptolemy, given the breadth of his writings as 

well as the impact they had on Middle Eastern societies for hundreds of years, this is clearly not 

an exaggeration.  

Reference 

O. H. Ta’ani, An Analysis of the Contents and Pedagogy of Al-Kashi’s 1427 “Key To 

Arithmetic” (Miftah Al –Hisab), New Mexico State University, 2011.  
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INSCRIBED CIRCLES 
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Abstract 

In this article, we solve the following problem: 

Any triangle can be divided by a cevian into two triangles that have congruent inscribed circles. 
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Figure 1 

 

 

 

 Indeed, noting 𝛼 = 𝑚(𝐵𝐴𝐼1̂), it follows that 𝑚(∢𝐼1𝐴𝑀) = 𝛼. From ∢𝐼1𝐴𝐼2 = ∢𝐵𝐴𝐼, it follows 

that ∢𝐵𝐴𝐼1 ≡ ∢𝐼𝐴𝐼2, therefore ∢𝐼1𝐴𝑀 ≡ ∢𝐼𝐴𝐼2, indicating that 𝐴𝑀 and 𝐴𝐼 are isogonal cevians 

in the triangle 𝐼1𝐴𝐼2. Since in this triangle 𝐴𝑀 is a median, it follows that 𝐴𝐼 is a bimedian. 

 Now, we show how we build the point 𝐷, using the conditions (1) – (4), and then we prove that 

this construction satisfies the stated requirements. 
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Building the Point D 

 

1: We build the circumscribed circle of the given triangle ABC; we build the bisector of the angle 

BAC and denote by P its intersection with the circumscribed circle (see Fig. 2). 

2: We build the perpendicular on 𝐶 to 𝐶𝑃 and (𝐵𝐶) side mediator; we denote 𝑂1 the intersection 

of these lines. 

3: We build the circle ∁(𝑂1; 𝑂1𝐶) and denote 𝐴’ the intersection of this circle with the bisector 

𝐴𝐼 (𝐴’ is on the same side of the line 𝐵𝐶 as 𝐴). 

4: We build through 𝐴 the parallel to 𝐴’𝑂1 and we denote it 𝐼𝑂1. 

5: We build the circle ∁(𝑂1
′ ; 𝑂1

′ 𝐴) and we denote 𝐼1, 𝐼2 its intersections with 𝐵𝐼, and 𝐶𝐼 

respectively. 

Figure 2 
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6: We build the middle 𝑀 of the segment (𝐼1𝐼2) and denote by 𝐷 the intersection of the lines 𝐴𝑀 

and 𝐵𝐶. 

Proof 

  

 

Remark 

At the beginning of the Proof, we assumed that 𝐴𝐵𝐶 is a non-isosceles triangle with the stated 

property. There exists such triangles; we can construct such a triangle starting "backwards". We 

consider two given congruent external circles and, by tangent constructions, we highlight the 

𝐴𝐵𝐶 triangle. 
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Open problem 

Given a scalene triangle 𝐴𝐵𝐶, could it be triangulated by the cevians 𝐴𝐷, 𝐴𝐸, with 𝐷, 𝐸 

belonging to (𝐵𝐶), so that the inscribed circles in the triangles 𝐴𝐵𝐷, 𝐷𝐴𝐸 and the 𝐸𝐴𝐶 to be 

congruent? 
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ALPHAMETICS 

Edited by Charles Ashbacher 

All of the alphametics in this section were created by Charles Ashbacher 

 The first point to note is the publication of the book Alphametics Expressing Thoughts From 

the Star Trek™ Original Series, written by Charles Ashbacher, ISBN 9781512152784. 

The first problem is a tribute to the Star Trek original series episode 4, “The Naked Time” and 

the Star Trek: The Next Generation episode 3, “The Naked Now.” 

 

         3 

         4 

      BOTH solve in base 14 and maximize NAKED 

      TIME  

       AND 

       NOW  

       ARE 

 

     NAKED  

This problem is a tribute to episode 6 of Star Trek: The Next Generation, “Where No One has 

Gone Before.” It is a change from the orginal series, where the phrase was, “Where No Man Has 

Gone Before.” 

         6 

     WHERE 

     NOONE solve in base 12 and minimize BEFORE 

       HAS 

      GONE 

 

    BEFORE 

A tribute to episode 23 of Star Trek: The Next Generation, “The Skin of Evil” 

       23 

     SKIN  solve in base 12 and maximize TASHA 

       OF 

     EVIL 

    KILLS 

 

    TASHA 
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This alphametic is doubly true in Adai, a Native American language in the Louisiana area of the 

United States. It went extinct in the early nineteenth century. 

     NASS           2 

     NASS           2 

    COLLE           3 

    COLLE           3 

 

   NEUSNE          10 

Doubly true Somali           

       EBAR     0 

       AFAR     4 where AFAR is evenly divisible by 4 

       AFAR     4 

       LABO     2 

 

      TOBAN    10 

 Where two WRONGs can make a RIGHT. This problem is similar to one that appeared in 

Mathematical Bafflers, edited by Angela Dunn and published by Dover. 

    WRONG 

      AND and it is fitting that we want to maximize RIGHT 

    WRONG 

 

    RIGHT 
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BOOK REVIEWS 
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Charles Ashbacher Technologies  
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E-mail: cashbacher@yahoo.com 

 

College Calculus: A One-Term Course for Students with Previous Calculus Experience, by 

Michael E. Boardman and Roger B. Nelson, the Mathematical Association of America, 

Washington, D. C., 2015 388 pp., $60.00 (hardbound). ISBN 978-1-93951-206-2. 

 When the authors use the phrase “with previous calculus experience” in the title they mean an 

introductory calculus course in high school. Using this as justification, they start late in the 

calculus sequence and move quickly.  

 The best way to demonstrate how late they start is to point out that using substitution in 

integration is mentioned on page 7 and the explanation of the cylindrical shell method of 

determining volume starts on page 11. Integration by parts is on page 18. 

 The material covered is typical of that of a second semester calculus course, but there are only 

brief encounters with the topics, theorems are stated but there is little in the way of proofs. After 

the techniques of integration are examined, numerical integration, polar coordinates, improper 

integrals and infinite series are covered.  

 One characteristic of this book that makes it so unlike other calculus books is the small number 

of exercises. While there are exercises at the end of sections, the numbers and page count is 

unusually small. For example, the topic of section 8.3 is polar coordinates and there are only 26 

exercises that take up approximately one-and-a-half pages at the end. I found this very 

refreshing, a welcome break from the apparent arms race where calculus book authors seem to 

try to differentiate themselves by including more exercises. Standard practice is followed in 

terms of solutions, answers to the odd-numbered ones are given in an appendix. 

 If your course is one where you are presenting the essentials of calculus with minimal proof to 

students with a background in the derivative and have integration experience, this is a book that 

will work for you. Outside that audience, I am uncertain if the value extends beyond the person 

that needs a fast and furious refresher.  

                                                                                                                            Charles Ashbacher 
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Mathematical Bafflers, edited by Angela Dunn, Dover Publications, Mineola, New York, 1980. 

217 pp., $10.95 (paper). ISBN 9780486239613. 

This review was published on the Mathematical Association of America Book Review site  

http://www.maa.org/publications/maa-reviews/mathematical-bafflers 

and is republished here with permission.  

 The world of mathematical puzzles is a rich one, yet is generally based on a small number of 

fundamental principles. Even though you may know the solution strategy for a type of puzzle, 

however, when presented with a new one you are essentially starting over. For example, the logic 

type of puzzle (John, George, Sam and Joe are married to Joan, Jenna, Janet and Judy. John is 

not married to Judy…) is a staple and many of that type are found in this book. Solving the 

problem means determining what you know and following a sequence of scenarios until the 

solution is found. No matter how many you solve, if the puzzle is well written it is still a 

challenge. 

 To me, the quality of the writing of the puzzles is what differentiates this book from the others. 

Having read many puzzle books in my years as a reviewer, my identification of the type of 

problem is often immediate. While that did often happen, there were many where I had to slow 

down my reading pace so that I could clearly understand the scenario. 

 The puzzles in this book were selected from the problems that appeared in the weekly 

“Problematical Recreations” column in Aviation Week and Electronic News. These are 

considered the best that appeared over the course of 12 years. Very little in the way of 

mathematical skill is needed to solve them, yet that does not make them easy, even for 

professional mathematicians/problem solvers. All solutions are included and like the great 

puzzles, generally obvious after the fact. 

 Math teachers from late elementary school all the way through college will be able to find 

something in this book that they can use to enliven their classrooms. No calculators or other 

computational devices are required, only an open brain and perhaps pencil and paper.  

                                                                                                                        Charles Ashbacher 

Exploring Advanced Euclidean Geometry with GeoGebra, by Gerard A Venema, the 

Mathematical Association of America, Washington, D. C., 2013. 129 pp, $50.00 (hardbound). 

ISBN 978-0-88385-784-7 

 Geometry is such a visual subject that it cannot be learned without the creation of 

understandable diagrams. In the classrooms of past years, this meant a writing utensil on either a 

chalk or whiteboard, a process that was not easy for those of us that are challenged by simple 

drawings. The combination of this text and the ability to use a free package that can be used to 

http://www.maa.org/publications/maa-reviews/mathematical-bafflers
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illustrate the examples is a powerful tool for teaching Euclidean geometry. 

The speed with which the geometry can be taught as well as the level of student retention will 

both be increased by using this book as a text in combination with Geogebra. Since not much has 

changed in the area of advanced Euclidean geometry in a long time, the content is fairly 

standard.    

 I was very impressed with the last chapter where the Poincaré disk is used to demonstrate 

hyperbolic geometry. There is a misplaced notion among many that non-Euclidean geometry is 

hard when in fact there are very understandable ways to introduce it. This shows a logical and 

effective way to demonstrate hyperbolic geometry. 

 Utilizing the dynamic and visual advantages of Geogebra, the math teacher can delve far deeper 

into the subject matter than was possible before. Since the text is very clear as a standalone tool, 

the combination will make the teaching of geometry far more efficient than it has been in the 

past. 

                                                                                                                           Charles Ashbacher 

The Moscow Puzzles: 359 Mathematical Recreations, by Boris A. Kordemsky, edited by 

Martin Gardner, Dover Publications, Mineola, New York. 320 pp., $14.95 (paper). ISBN 978-

0486270784.  

This review was published on the Mathematical Association of America Book Review site  

http://www.maa.org/publications/maa-reviews/the-moscow-puzzles-359-mathematical-

recreations 

and is republished here with permission.  

Most of the puzzles in this collection have appeared in some form in many other publications, 

both in print and online. For example, number 11 is the classic, “Wolf, Goat and Cabbage” 

problem that can be traced back to writings in the eighth century. There are cryptarithms, designs 

with matches, dissections, logic problems in textual form, problems with dominoes, number 

crossword puzzles, puzzles involving magic squares, number puzzles and properties and a few 

involving chess and checkers. 

Although the puzzles are generally old and have been frequently used, that is a tribute to their 

quality rather than an indication that they are stale and out of date. Instructors from elementary 

school all the way through college will be able to find items that they can use in their classes to 

challenge the students. 

When I was in the sixth grade the math teacher posed a series of puzzles to the class and it was a 

competitive contest to solve them as the names of the solvers were posted on the board. All were 

within the capabilities of the class and we enjoyed the challenge and the thrill of solution. Some 

of the problems in this collection could have been used in that contest. 

http://www.maa.org/publications/maa-reviews/the-moscow-puzzles-359-mathematical-recreations
http://www.maa.org/publications/maa-reviews/the-moscow-puzzles-359-mathematical-recreations
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Study after study has demonstrated that the older person that continues to pursue mental 

challenges remains much more functional in the cognitive sense than the person that simply goes 

mentally passive. While it of course cannot solve all problems of losing mental acuity as you 

age, there are enough challenges in this book to help keep the neurons firing at a high level. 

                                                                                                                             Charles Ashbacher 

Headstrong: 52 Women Who Changed Science—and the World, by Rachel Swaby, 

Broadway Books,  New York, New York, 2015. 288. pp., $16.00(paper). ISBN 978-0553446791. 

 Marie Curie. That is the name you’d probably hear if you walked up to a stranger and asked 

them to name a female scientist. But what would you hear if you pressed them to name another? 

Yvonne Brill? Emmy Noether? Salome Gluecksohn Waelsch? All of these women—Curie 

included—made significant contributions to their various fields. Yet most are strangers, their 

achievements buried under more familiar names like Einstein or Newton, or worse, buried under 

the stereotypes of their gender. Headstrong brings these women forward, profiling 52 female 

chemists, biologists, physicists, geneticists, and others whose ideas, research, dedication, and 

breakthrough discoveries paved the way for scientific advancement today. 

 Headstrong is broken up into seven sections—medicine, biology and the environment, genetics 

and development, physics, the earth and the stars, math and technology, and invention—with at 

least four women profiled in each category. Each profile is about four pages and briefly covers 

each woman’s background, how she came to be interested in her work, and the significant 

contributions she made to her field. Swaby livened up what would otherwise be tedious writing 

with humorous quotes or situations taken directly from the lives of these women, a greatly 

appreciated personal touch. 

 While this book would be a great starting point for students who wanted to learn or write about 

women in science, as a casual read, it left something to be desired. I went into this book 

recognizing only five of the 52 women by name, but I left with only a handful more, feeling 

somewhat overwhelmed—not necessarily by the number of women profiled, but by the brevity 

with which they were presented. I wanted to know more! Swaby does include notes and a 

bibliography at the end of the book, useful for further reading, but I wish such information had 

also been included at the end of each woman’s profile. 

 In spite of its brevity, I love that this book exists. In a time when women still feel left out of or 

discriminated within STEM fields, Headstrong offers 52 fantastic female role models—like 

Hedy Lamarr, whose contributions led to wi-fi, you can purchase every volume of Topics in 

Recreational Mathematics online while sitting at your local coffee shop. Thanks to these 52 

women (and the many more not included in this book), anyone can be inspired to pursue an 

interest in science and perhaps make their own lasting contribution to the world and how we live 

in it. 

                                                                                                                                   Rachel Pollari 
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*2870.  Prime Conjecture by Andrew Cusumano, Great Neck, NY (JRM, 38:1, p. 60) 

Let  𝑝𝑛 denote the n-th prime and N  be the next-prime function, i.e.  𝑁(𝑚) is the smallest prime 

greater than m.  Define  𝐹(𝑘) = 𝑁(2 × 3 × … × 𝑝𝑘−1 + 𝑝𝑘) − (2 × 3 × … × 𝑝𝑘−1) .  For 

example,  

𝐹(4) = 𝑁(2 × 3 × 5 + 7) − (2 × 3 × 5) = 11 .   

What can be said about the range of this function?  Does it consist only of primes?  Does it 

contain all odd primes? 

Solution by Richard Hess 

The data in table 1 suggests that only primes will be produced by the function 

F(k) = N ( ∏ pi

k−1

1

+ pk) − ∏ pi

k−1

1

 

 

 

 Many odd primes do not belong to the range of 𝐹(𝑘).  This is because the set of 𝐹(𝑘) for  𝑘 < 𝑛 

does not include 𝑝𝑛−1 .  Some such primes are 3, 17, 19, 31, 43, 53, 59, 79, 83, 97 and 109. 
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Table 1 

n N F(n) n F(n) n F(n) n F(n) 

2 7 5 17 73 32 163 47 773 

3 13 7 18 89 33 229 48 607 

4 41 11 19 109 34 643 49 383 

5 223 13 20 89 35 239 50 383 

6 2333 23 21 103 36 157   

7 30059 29 22 163 37 167   

8 510551 41 23 151 38 439   

9 9699727 37 24 197 39 239   

10 223092907 37 25 101 40 199   

11 6969693291 61 26 103 41 191   

12 200560490197 67 27 233 42 199   

13 7420738134871 61 28 223 43 383   

14 304250263527281 71 29 127 44 233   

15 13082761331670097 67 30 223 45 751   

16 614889782588491517 107 31 191 46 313   

 

2871.  Pentomino Doublers by Lamarr Widmer, Mechanicsburg, PA (JRM, 38:1, p. 61) 

 Figure 1, a solution to problem 2822 (JRM 36:4, p. 359), shows that the Z-pentomino and three 

others can be used to construct a double scale version of itself.  We readily see that the X-

pentomino does not share this property.  What about the other ten pentominoes (Figure 2)? 
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Figure 1 
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Figure 2 

 

Solution by Henry Ibstedt, Richard Hess and Brian Barwell (composite) 

Seven pentominoes F, I, L, N, P, U and Z lent themselves to form the 33 diagrams below.  

FPUV, LPUX, NPVZ and PUVY gave raise to doubles of the doublers. It is remarkable that P 

occurs in all the diagrams except #31 LNVZ.  
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   2872.  Pipe Navigating a Corner by Hubert Hagadorn, Menlo Park, CA (JRM, 38:1, p. 61)   

A pipe is bent up to ninety degrees at its midpoint so as to maximize its length for transporting in 

trenches of constant width having right angle turns.  What is the maximum length of the pipe and 

what is the angle of the bend?  Assume that the pipe remains horizontal while passing along the 

trench and that the diameter of the pipe is negligible.  

Solution by the Proposer 

The angle of bend is equal to 2α, or 47.071 degrees.  The pipe length is 2L, or 5.009 units.  For 

reference, the angle of θ is 35.352 degrees when the pipe clearance is zero is (i.e. when the pipe 

just contacts the inside corner). 
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In the above figure the clearance of the pipe from the inside corner must be positive, requiring  

y  w.  The pipe length is 2L, the trench width is w, while the pipe orientation is given by θ, 

which references a line passing through the pipe’s endpoints to the horizontal. 

),cos()sin(   Ly  

where 

)sin(

2/











w
L

 

Eliminating δ and   from y, and simplifying 

)tan()cos()sin(2   wLy                              (1) 

Now h must not exceed w, so that 

10,)sin(  kkwLh                                  (2) 

Solving for L and substituting in (1) 

)]tan()cot()sin(2[   kwy                               (3) 

As the pipe negotiates a right turn, θ varies from 0 to 90 degrees.  As a result y reaches a 

maximum then decreases.  Finding the local maximum, and thus setting dy/dθ = 0 gives 

0)(sec)cot()cos(2 2  k                               (4) 

L - δ 

δ 
L θ 

w 

w 

h 

α 

α 

y 

 
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Since L is maximized when y in (3) is maximized, setting y to its maximum allowable value of w 

gives 

1)tan()cot()sin(2  k .                             (5) 

For a given k the above two equations may be solved for α and θ.  From equation (2) 

)sin(

k

w

L


. 

Experimentally, L was found to be maximum when k is at its greatest value, unity. 

2873.  Unknown Modulus by Hubert Hagadorn, Menlo Park, CA (JRM, 38:1, p. 62)   

Given nonnegative integers x and r, find solutions for the modulus n of the Diophantine equation 

  𝑥 ≡ 𝑟 (mod 𝑛) .  Assume that  0 ≤ 𝑟 ≤ 𝑛 − 1 . 

Solution by the Proposer 

1. If r > x, no solution exists for n. 

2. If r = x, n is any integer greater than r. 

3. If x / 2   r < x, no solution exists for n. 

4. If 0   r < x / 2, n is any integer that is a divisor of x – r and greater than r. 

 

Condition 1 is a result that the modulus function yields r values that are less than or equal to x. 

Condition 2 holds since for n > x, r will always be equal to x. 

For Condition 3, consider the following equation upon which the modulus function is based 

 x = k n +r,  

where k is the least positive integer greater than or equal to zero, and 0   r < n.  When k is zero 

solutions for r = x applies.  For k  1, solving for n and requiring n > r  

 n = (x – r) / k > r, 

so that 

 r < x / (k + 1). 

Maximum values of r must be less than x / 2, corresponding to k = 1.  Larger values of k will be 

more restrictive.  As a result n has no solution for x / 2   r < x (Condition 3). 

For r < x / 2, possible values for k are the divisors of x – r.  Possible values for n are likewise the 

divisors of x – r.  The allowed values for n are those divisors greater than r (Condition 4). 
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For example, consider x = 29 and r = 15.  No solution is possible as r > x /2.  29 mod 15 = 14, 

and 29 mod 14 = 1, not 15.  

Also, consider x = 29 and r = 5. The divisors of x – r = 24 are 1, 2, 3, 4, 6, 8, 12, and 24.  Valid 

values for n are the divisors greater than 5, namely, 6, 8, 12, and 24. 

2874.  Digital Fraction Sum by Andy Pepperdine, Bath, UK (JRM, 38:1, p. 62)   

We can express the number 1 in several ways as the sum of two fractions which together use 

each of the nine nonzero digits exactly once.  The fractions are not necessarily in lowest terms.  

For example,   1 =
4

12
+

638

957
 .   

a.  What is the smallest possible value for any of the fractions? 

b. If we include zero, but not as the first digit in any term, then what is the smallest possible 

value for one of the fractions? 

Solution by several contributors 

 

2875.  Integral Powers of an Irrational Number by Henry Ibstedt, Broby, Sweden (JRM, 38:1, 

p. 62)   

Show that every positive integral power of  √2 − 1  can be expressed in the form  

√𝑚 − √𝑚 − 1. 

Solution by Michael P. Cohen 

Define two sequences ak and bk by a1
 = b1 = 1 and for k > 1, ak = ak-1 + 2bk-1 and  

bk = ak-1 + bk-1. We shall show that 

 
( 2 1) 1k

k km m   
  

where if k is odd, mk = 2b2
k and mk – 1 = ak

2. Whereas if k is even, mk = ak
2 and mk – 1 = 2b2

k.  

The result holds for k = 1 because  

1 2 2

1 1( 2 1) 2 .b a  
  

The result holds for k = 2 because 

 
2 2 2

2 2( 2 1) (2 2 2 1) 9 8 2a b       
  

where a2 = a1 + 2b1 = 3 and  b2 = a1 + b1 = 2.  
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To prove the result for k > 1 odd by induction, we assume it holds for k - 1 even.  Then 

1 2 2 2 2 2 2

1 1 1 1 1 1( 2 1) ( 2 1) ( 2 1) ( 2 )( 2 1) 2 2 2k k

k k k k k ka b a a b b

               
 

2 2

1 1 1 1 1 1 1 12 2 2 2( ) ( 2 ) 2 2 .k k k k k k k k k k k ka a b b a b a b b a b a                  
  

 

 Setting mk = 2b2
k,  it remains to show that a2

k = mk – 1.  But  

 
2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

2 2

1 1

2 2( ) ( 2 ) 2 4 2 4 4

2 1

k k k k k k k k k k k k k k

k k

b a a b a b a a b b a a b b

a b

           

 

          

      

by the induction hypothesis. 

 Finally, we show the result for even k + 1. Similar to the previous equation, 

 

1 2 2 2 2 2 2( 2 1) ( 2 1) ( 2 1) ( 2 )( 2 1) 2 2 2k k

k k k k k kb a b a b a          
 

2 2

1 1 1 12 2 2 ( 2 ) 2( ) 2 2 .k k k k k k k k k k k kb a b a a b a b a b a b              
 

To show that 2b2
k+1 = a2

k+1 – 1, compute 

2 2 2 2 2 2 2 2

1 1

2 2

2 2( ) ( 2 ) 2 4 2 4 4

2 1.

k k k k k k k k k k k k k k

k k

b a a b a b a a b b a a b b

a b

           

     

2876.  Dudeney’s Century Puzzle by Andy Pepperdine, Bath, UK (JRM, 38:1, p. 62)   

H.E. Dudeney in his Amusements in Mathematics, question 90, “The Century Puzzle”, asks us to 

represent the number 100 as a “mixed fraction”, that is of the form A + B/C, using each of the 

digits, 1 – 9, once only. For example 100 = 82 + 3546 / 197.  He says that Edouard Lucas had 

found seven solutions, but in fact there are 11, and in that Dudeney was correct. There are 11 

solutions, which he supplies in his answers. 

a. What about other powers of ten? Can the numbers 10, 1000, 10000, etc. be so represented, 

and if so, in how many ways? 

b. What about using all ten digits, not allowing zero as the first digit in any number? 

c. In Question 91, “More Mixed Fractions”, he states in his answers that, for the number 26, he 

had “recorded no fewer than 25 different arrangements” using the nine digits. In fact there 

are more. How many? 

Solution by the Proposer and by Hubert Hagadorn (independently) 

For (a) and (b) all representations are included in table 2. 
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Table 2 

 Nine digits Ten digits 

10 6 + 5892 / 1473 

7 + 5469 / 1823 

7 + 5496 / 1832 

7 + 6549 / 2183 

7 + 6954 / 2318 

7 + 9546 / 3182 

7 + 9654 / 3218 

1 + 85203 / 9467 

6 + 19032 / 4758 

6 + 30192 / 7548 

6 + 37140 / 9285 

100 3 + 69258 / 714 

81 + 5643 / 297 

81 + 7524 / 396 

82 + 3546 / 197 

91 + 5742 / 638 

91 + 5823 / 647 

91 + 7524 / 836 

94 + 1578 / 263 

96 + 1428 / 357 

96 + 1752 / 438 

96 + 2148 / 537 

27 + 65043 / 891 

36 + 57024 / 891 

43 + 51072 / 896 

45 + 21780 / 396 

51 + 34692 / 708 

72 + 13860 / 495 

73 + 24516 / 908 

82 + 10674 / 593 
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 Nine digits Ten digits 

1000 534 + 9786 / 21 

597 + 4836 / 12 

597 + 8463 / 21 

751 + 9462 / 38 

756 + 4392 / 18 

913 + 4872 / 56 

924 + 3876 / 51 

951 + 4263 / 87 

954 + 3726 / 81 

957 + 3612 / 84 

967 + 1254 / 38 

153 + 60984 / 72 

208 + 41976 / 53 

396 + 27180 / 45 

561 + 40827 / 93 

745 + 21930 / 86 

843 + 15072 / 96 

957 + 4386 / 102 

957 + 8643 / 201 

964 + 3852 / 107 

987 + 4056 / 312 
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 Nine digits Ten digits 

10000 348 + 57912 / 6 

451 + 76392 / 8 

631 + 74952 / 8 

948 + 27156 / 3 

978 + 54132 / 6 

7914 + 6258 / 3 

9316 + 5472 / 8 

9541 + 3672 / 8 

9753 + 1482 / 6 

 

1047 + 26859 / 3 

3691 + 50472 / 8 

4785 + 31290 / 6 

4908 + 15276 / 3 

5041 + 39672 / 8 

5401 + 36792 / 8 

5491 + 36072 / 8 

7503 + 14982 / 6 

7845 + 12930 / 6 

9345 + 7860 / 12 

9435 + 6780 / 12 

9637 + 5082 / 14 

9702 + 5364 / 18 

9745 + 8160 / 32 

9765 + 4230 / 18 

9853 + 6027 / 41 

100000 None 321 + 598074 / 6 

376 + 498120 / 5 

483 + 597102 / 6 

651 + 298047 / 3 

 

For (c), there are 29 ways of representing 26 using the nine non-zero digits: 

 

3 + 21758 / 946 18 + 4736 / 592 21 + 3485 / 697 

4 + 16258 / 739 18 + 5392 / 674 21 + 3845 / 769 

8 + 17352 / 964 18 + 5432 / 679 21 + 4685 / 937 
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9 + 12546 / 738 18 + 5936 / 742 21 + 4835 / 967 

12 + 6398 / 457 18 + 6352 / 794 21 + 4865 / 973 

14 + 3576 / 298 18 + 7456 / 932 23 + 1974 / 658 

18 + 3672 / 459 18 + 7536 / 942 24 + 1358 / 679 

18 + 3752 / 469 18 + 7624 / 953 24 + 1538 / 769 

18 + 4296 / 537 18 + 7632 / 954 24 + 1586 / 793 

18 + 4632 / 579 19 + 5236 / 748  

And 30 ways if we include a zero: 

3 + 24587 / 1069 8 + 57042 / 3169 9 + 54706 / 3218 

6 + 34580 / 1729 9 + 26078 / 1534 9 + 58072 / 3416 

6 + 35840 / 1792 9 + 34867 / 2051 9 + 68357 / 4021 

6 + 38540 / 1927 9 + 35768 / 2104 9 + 68527 / 4031 

6 + 43580 / 2179 9 + 46801 / 2753 9 + 71536 / 4208 

6 + 47180 / 2359 9 + 47651 / 2803 9 + 78251 / 4603 

6 + 54380 / 2719 9 + 51476 / 3028 9 + 80512 / 4736 

6 + 58340 / 2917 9 + 51782 / 3046 9 + 86241 / 5073 

6 + 71840 / 3592 9 + 52768 / 3104 9 + 86734 / 5102 

7 + 30286 / 1594 9 + 54026 / 3178 24 + 6158 / 3079 

2877.   Recurring 3’s by Charles Ashbacher, Marion, Iowa (JRM, 38:1, p. 63)   

In his book Mathematics Galore, James Tanton poses the problem of finding a number N such 

that all of the multiples 𝑁, 2𝑁, … , 10𝑁 contain a digit 3. 

a. Tanton provides the solution 𝑁 = 19507893 which “more than” solves this problem.  Find 

the first positive integer m, such that 𝑚𝑁  does not contain a digit 3. 

b. Find a value of N which improves on the one given in a.  That is, find N, such that all of the 

multiples 𝑁, 2𝑁, … , 𝑘𝑁 contain a digit 3 and  𝑘 ≥ 𝑚 . 

*c.  Is there an upper bound on the value of k ? 

Reference: 

1. Mathematics Galore, James Tanton, The Mathematical Association of America, Washington 

D.C., 2012. ISBN 978-0-88385-776-2.  

 



137 

 

 

Solution by Michael P. Cohen 

a. By direct computation, m = 26. That is, all multiples N, 2N, …, 25N contain a digit 3 but 26N 

does not. 

b. We will construct an N such that k is at least 1,000.   Every number of at most 1,000 when 

multiplied by at least one of the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13,14,15, 16, 17, 25, 

or 31 contains a digit 3 and has at most 5 digits.  Take  

N=310002500017000160001500014000130001200011000090000800007000060000500004000030000200001.   

This number will have a digit of 3 when multiplied by any number 1,000 or less. The zeroes 

between the positive digits prevent carries from interfering.  

c. No.  The construction method given in b can be extended, adding more zeroes between the 

positive  digits, to give arbitrarily long sequences. 

Editor’s Commentary  

Andy Pepperdine answered part c with the following. 

 There is no limit to the value of k. 

 First, note that for each value j, we can choose a number v(j) such that  𝑗 × 𝑣(𝑗) contains the 

digit 3. To see this consider that all single digits have a multiple between 30 and 39, all two digit 

numbers have a multiple that lies between 300 and 399, and all three digit numbers a multiple 

that lies between 3000 and 3999, etc. 

 Now look at the numbers v(1), v(2), v(3), … v(k), and put them in sequence one after the other, 

and place sufficient zeroes between them to remove any carries when multiplied by each j in 

turn. The resulting number, when multiplied by j, will contain a three in the j'th section. 

2878.  Primes of the Form  𝒑 − 𝟐𝒌 , by Henry Ibstedt, Broby Sweden (JRM, 38:1, p. 63)   

a. For the prime 𝑝 = 3331, the value of  𝑝 − 2𝑘 is prime for odd values of k from 1 through 11.  

Is there a longer such sequence of primes? 

b. For the prime 𝑝 = 1487, the value of  𝑝 − 2𝑘 is prime for even values of k from 2 through 10.  

Is there a longer such sequence of primes? 

Solution by Hubert Hagadorn 

a. There are many longer sequences of such primes.  Based on searches to 108, table 3 contains 

the smallest primes found for an odd k > 11. 
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Table 3 

Prime            k 

754939 13 

5308579        15 

10786879 17 

190475011 21 

b. There are many longer sequences of such primes.  Based on searches to 108, table 4 contains 

the smallest primes found for an even k > 10. 

Table 4 

Prime  k 

29867 12 

49433 14 

176417 16 

13032533 20 

 

2879. Linear Combination of Irrationals, by Hubert Hagadorn, Menlo Park, CA (JRM, 38:1, p. 

63)   

We consider the inequality  |𝑎𝜋 + 𝑏𝑒 + 𝑐𝜑| < 10−6  where 𝜋, 𝑒 and 𝜑 (golden ratio) are 

mathematical constants, while a, b and c are integers.  Find solutions where  𝑎𝑏𝑐 ≠ 0 , and 

a. 𝑎 + 𝑏 + 𝑐 = 0 

b. |𝑎| + |𝑏| + |𝑐| is minimum. 

Solution by Andy Pepperdine 

Assuming that the golden ratio is defined as  φ = (√5 + 1)/2 ≈ 1.618034. 

a) If a + b + c = 0, then 𝑐 = −(𝑎 + 𝑏), and we are looking for |𝑎(π − φ) + 𝑏(𝑒 − φ)| < 10−6 

 

a = 751809, b = − 1041061, c = 289252, and  a π + b e + c φ ≈ − 8.286443 × 10−7. 

b) A computer search finds: 

a = 229, b = −1173, c = 1526, a π + b e + c φ ≈ − 2.780580 × 10−7, and |a| + |b| + |c| = 2928. 
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PROPOSERS AND SOLVERS LIST FOR PROBLEMS AND CONJECTURES THAT 

APPEARED IN JOURNAL OF RECREATIONAL MATHEMATICS, 38(1) 
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SOLUTIONS TO THE ALPHAMETICS IN THIS ISSUE 

Charles Ashbacher 

1. 

                3 

                4 

      11  7 13  3 where 0 & 3 and 6 & 8 can interchange 

      13  4  8  9 

         12  1  5 

          1  7  0 

         12  6  9 

 

    1 12 10  9  5 

2.  

                6 

    4  8  0  3  0 

    7  2  2  7  0 

          8  9  6 

      11  2  7  0 

 

 1  0 10  2  3  0 

3. 

           2  3  

     9 10  6  1 

           5  0   where 0 & 1 can interchange 

     4  2  6  7 

 10  6  7  7  9 

 

 11  8  9  3  8 

4.  

      1933 

      1933 

     68224 

     68224 

 

    140314 
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5.  

      9764 

      6164  where 8 & 9 can interchange 

      6164 

      8670 

 

     30762 

 

6.  

     49217 

       316 

     49217 

 

     98750 
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Edgematching puzzles, the neighborly mathematics      

by Kate Jones 

 The idea of linking compatible parts together is as old as the horse and cart, or a handshake, or 

dominoes. Early forms of matching puzzles are jigsaw-cut pictures where pieces join to re-

establish the original image. Those pieces, however, fit only one way. 

 A more interesting puzzle allows any piece to match with any other piece on one or more sides. 

The pioneering work in this genre was done by British mathematician Major Percy MacMahon, 

who published several models in his landmark book, More Mathematical Pastimes (1921). The 

most famous are MacMahon’s Three-Color Squares and MacMahon’s Four-Color Triangles.  

                     

The Three-Color Squares are divided diagonally into four triangles which are individually 

colored so that each side of the square can have its own color. By coloring these subtriangles in 

all different combinations of three colors, MacMahon identified 24 distinct tiles. These can then 

be joined into various shapes where all touching sides match and the outer border is uniform. 

The 4x6 rectangle has 13,328 solutions! Much of the research into this set was done by Wade 

Philpott in the 1960s and 1970s and published first by Wade and later by Kadon under the name 

Multimatch I. Philpott identified every solvable symmetrical shape, from shortest to longest 

perimeter.  

 The Four-Color Triangles consist of equilateral triangles divided into three isosceles 

subtriangles to give each side of the triangle its own color. When filled with every combination 

of four colors, the resultant 24 triangles can be joined in many shapes, the most compact being 

an order-2 hexagon (left), with all edges matched and a uniform border.  Wade Philpott’s 

extensive research identified every possible symmetrical shape solvable with both conditions. 

This set has been published by Kadon since 1989 as Multimatch III. 

 These two sets begat the design of many related themes of edgematching tiles with various 

shapes and connection methods. All product names shown are trademarks of Kadon Enterprises, 

Inc. All sets not credited by name to others are by Kate Jones. Here are some examples from 

Kadon’s growing collection, left to right: Multimatch II (corner-colored squares); Multimatch IV 
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(corner-colored triangles); and Marshall Squares (edge-colored squares with 1 or 2 colors per 

tile, using 5 colors) by William Rex Marshall. 

 

 

 

 

 

 More elaborate sets use hexagons, octagons and even dodecagons, left to right: Hexmozaix 

(hexagons inlaid with chevrons and diamonds in 3 colors) by Charles Butler; MemorIQ 

(hexagons inlaid with 3 flattened pentagons in every combination of 4 colors) and Doris 

(octagons inlaid with 4 stretched hexagons in 3 colors) by Zdravko Zivkovic. 

 

 

 

 

 

 

 

 A most majestic set of 30 tiles is Dazzle (below left) invented by Charles Butler, where 

dodecagons are inlaid with pie-shaped segments in 3 colors that match joined tiles while they 

surround triangular spaces with all same or all different colors. Grand Bowties (below right) has 

4 colors inlaid on cross-shaped tiles that can match on edges, corners or even just tips. 

Another connecting device uses cut-outs that can even be assembled by touch to enable blind 

players to solve, like these, left to right: Four on a Match (squares with 4 shapes embedded at 

their corners); MultiTouch I (squares with 3 shapes carved from their edges—equivalent to 

Multimatch I); MultiTouch II (squares with 3 shapes cut into their corners—equivalent to 

Multimatch II); MultiTouch III (triangles with 4 shapes on their edges—equivalent to 

Multimatch III); and MultiTouch IV (triangles with 4 shapes carved from their corners—

equivalent to Multimatch IV). When matched cut-outs join, interesting filigree patterns appear. 
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 Changing colors or cut-outs into contour shapes also produces equivalent sets of matchable tiles, 

like these, left to right: Snowflake Super Square (squares with 3 shapes of edge instead of color, 

related to Multimatch I); Trifolia (triangles with 4 shapes of edge substituted for colors—

equivalent to Multimatch III); and Leaves (hexagons with inward and outward notches) created 

by Sjaak Griffioen. 

 

 

 

 

 

 

 Further innovations are tiles with pathways on them that produce continuous lines and loops 

when joined. From left to right, top to bottom:  Arc Angles (25 distinct curved kites with line 

segments connecting five edge points); Dezign-8 (squares with 1 through 4 path exits); Kaliko 

(classic set of 85 hexagons with 3 colors on 5 path configurations that link opposite sides) 

created by Titus and Schensted; and Fractured Fives (two-sided squares with paths on one side 

and dissected pentominoes on the other). 
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These puzzles are eloquent paradigms of systems that can build harmony from diversity in a 

great many cooperative ways. There’s hope that human societies could do likewise! You can see 

these puzzles and more, most of them suitable for ages 8 to adult, on Kadon’s 

website at www.gamepuzzles.com/edgemtch.htm                               
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 This is a collection of alphametics, one for each of the episodes of the Star Trek™ original 

series as well as the first pilot. Solutions to all of the problems are also included.  

 Three cartoons having a Star Trek theme and an original image of the late Leonard Nimoy as 

Spock are also included. The cartoons were drawn by Caytie Ribble and the image of Spock by 

Jenna Richardson.  

 

 

 

Available on Amazon ISBN: 9781512152784 

 

 

 

 

 

 

 

 

 

Alphametics Expressing Thoughts 

From the Star Trek Original Series 



156 

 

 

 

 

 

 

 

 

Ideas by Charles Ashbacher 

Cartoons drawn by Caytie Ribble 

This is a collection of 50 cartoons having a mathematical theme. The ideas and concepts 

expressed range from the vulgar (in the mathematical sense) to the asinine, literally and 

figuratively. Brief explanations of the cartoons are also included.  

 

Available on Amazon ISBN: 9781514207130 
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